1
|
Chen S, Tan S, Hou W, Chen X, Bai L, Zou Y, Sun W, Zhang Z, Zhang Y. Efficacy and safety of standardized Ginkgo biloba extract as adjuvant therapy for intracerebral hemorrhage in China: A systematic review and meta-analysis. Heliyon 2024; 10:e26861. [PMID: 38439880 PMCID: PMC10909711 DOI: 10.1016/j.heliyon.2024.e26861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Objective The aim of this study was to systematically review the clinical efficacy and safety of standardized Ginkgo biloba extract (GBE) in the adjuvant treatment of intracerebral hemorrhage (ICH). Methods Relevant RCTs on GBE as adjuvant therapy for ICH were searched in seven Chinese and English databases. Data extraction of the included literature was performed after duplicate checking and screening, and Stata 15.1 software was applied for data analysis. Results With a total of 19 RCTs, the meta-analysis results showed that: Compared with conventional treatment alone, GBE combined with conventional treatment had a higher effective rate; NIHSS score and CSS score were lower; The residual hematoma was less. The volume of cerebral edema was smaller. ADL score was higher. MoCA score was higher. The serum levels of hs-CRP, TNF-α and IL-6 were lower; No significant difference was observed in the incidence of adverse reactions between conventional treatment alone and GBE combined with conventional treatment. Conclusion This study suggests that GBE as adjuvant therapy for ICH has better efficacy and is relatively safe compared with conventional treatment alone. However, due to the quality and quantity of included studies, further validation by more methodologically rigorous and multi-center studies with larger sample sizes is needed.
Collapse
Affiliation(s)
- Shikai Chen
- Shanghai University of Traditional Chinese Medicine, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
| | - Shufa Tan
- Shaanxi University of Chinese Medicine, China
| | - Wen Hou
- Affiliated Hospital of Shaanxi University of Chinese Medicine, China
| | - Xu Chen
- Xinjiang Medical University, China
| | - Lei Bai
- Shaanxi University of Chinese Medicine, China
| | | | - Weitong Sun
- Shaanxi University of Chinese Medicine, China
| | - Zhao Zhang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, China
| | - Yi Zhang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, China
| |
Collapse
|
2
|
Network Pharmacology Prediction and Experimental Verification for Anti-Ferroptosis of Edaravone After Experimental Intracerebral Hemorrhage. Mol Neurobiol 2023; 60:3633-3649. [PMID: 36905568 DOI: 10.1007/s12035-023-03279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
Neuronal ferroptosis plays an important role in secondary brain injuries after intracerebral hemorrhage (ICH). Edaravone (Eda) is a promising free radical scavenger that inhibits ferroptosis in neurological diseases. However, its protective effects and underlying mechanisms in ameliorating post-ICH ferroptosis remain unclear. We employed a network pharmacology approach to determine the core targets of Eda against ICH. Forty-two rats were subjected to successful striatal autologous whole blood injection (n=28) or sham operation (n=14). The 28 blood-injected rats were randomly assigned to either the Eda or vehicle group (n=14) for immediate administration and then for 3 consecutive days. Hemin-induced HT22 cells were used for in vitro studies. The effects of Eda in ICH on ferroptosis and the MEK/ERK pathway were investigated in vivo and in vitro. Network pharmacology-based analysis revealed that candidate targets of Eda-treated ICH might be related to ferroptosis; among which prostaglandin G/H synthase 2 (PTGS2) was a ferroptosis marker. In vivo experiments showed that Eda alleviated sensorimotor deficits and decreased PTGS2 expression (all p<0.05) after ICH. Eda rescued neuron pathological changes after ICH (increased NeuN+ cells and decreased FJC+ cells, all p<0.01). In vitro experiments showed that Eda reduced intracellular reactive oxygen species and reversed mitochondria damage. Eda repressed ferroptosis by decreasing malondialdehyde and iron deposition and by influencing ferroptosis-related protein expression (all p<0.05) in ICH rats and hemin-induced HT22 cells. Mechanically, Eda significantly suppressed phosphorylated-MEK and phosphorylated-ERK1/2 expression. These results indicate that Eda has protective effects on ICH injury through ferroptosis and MEK/ERK pathway suppression.
Collapse
|
3
|
Hua Y, Zhou L, Yang W, An W, Kou X, Ren J, Su H, Chen R, Zhang Z, Zou J, Zhao Z. Y-2 reduces oxidative stress and inflammation and improves neurological function of collagenase-induced intracerebral hemorrhage rats. Eur J Pharmacol 2021; 910:174507. [PMID: 34536364 DOI: 10.1016/j.ejphar.2021.174507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease, and there is currently no specific pharmacological treatment that can improve clinical outcomes. Y-2 sublingual tablets, each containing 30 mg edaravone and 6 mg (+)-borneol, is undergoing a phase III clinical trial for treatment of ischemic stroke in China. The purpose of the present study is to investigate the efficacy and potential mechanism of Y-2 in a rat model of collagenase IV injection induced ICH. Sublingual administration of Y-2 at the dose of 1, 3 and 6 mg/kg improved ICH-induced sensorimotor dysfunction, alleviated cell death and histopathological change, restored the hippocampal long-term potentiation (LTP), reduced brain edema and maintained blood-brain barrier (BBB) integrality in ICH rats. Further study demonstrated that Y-2 could reduce inflammatory response and oxidative stress by decreasing the levels of myeloperoxidase (MPO), ionized calcium-binding adaptor protein-1 (Iba-1), inflammatory cytokines and oxidative products, inhibit transcription factor nuclear factor-κB (NF-κB) activation, cyclooxygenase-2 (COX-2) and matrix metallopeptidase 9 (MMP-9) expression in brain tissue around in the core regions of hematoma. Importantly, the protective efficacy of Y-2 from ICH-induced injury was superior to edaravone. In conclusion, Y-2 sublingual tablets might be a promising therapeutic agent for the treatment of ICH.
Collapse
Affiliation(s)
- Yao Hua
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Limei Zhou
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Weidong Yang
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Wenji An
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Xiaolin Kou
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Jian Ren
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Hailang Su
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Rong Chen
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Zhengping Zhang
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China; State Key Laboratory of Translational Medicine and Innovative Drug, No.699-18, Xuanwu Avenue, Nanjing, Jiangsu, 210042, PR China.
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Zhihong Zhao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410005, China.
| |
Collapse
|
4
|
Li X, Feng D, Chen G. An Update On Medical Treatment for Intracerebral Hemorrhage. Transl Stroke Res 2018; 9:10.1007/s12975-018-0664-5. [PMID: 30206812 DOI: 10.1007/s12975-018-0664-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Dongxia Feng
- Department of Neurosurgery, Baylor Scott & White Medical Center, Texas A&M University College of Medicine, Temple, 76508, USA
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
5
|
Zhang Y, Yang Y, Zhang GZ, Gao M, Ge GZ, Wang QQ, Ji XC, Sun YL, Zhang HT, Xu RX. Stereotactic Administration of Edaravone Ameliorates Collagenase-Induced Intracerebral Hemorrhage in Rat. CNS Neurosci Ther 2016; 22:824-35. [PMID: 27390192 PMCID: PMC5095785 DOI: 10.1111/cns.12584] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/18/2016] [Accepted: 06/04/2016] [Indexed: 12/27/2022] Open
Abstract
Background Edaravone is widely used for treating ischemic stroke, but it is not still confirmed in intracerebral hemorrhage (ICH) as an ideal medication targeting the brain parenchyma. We aimed to investigate the neuroprotective effects of stereotactic administration of edaravone (SI) into the brain parenchyma. Methods Intracerebral hemorrhage rat models were established by infusion of collagenase into the caudate nucleus. Neural functional recovery was assessed using modified neurological severity scores (mNSS). A comparative study of therapeutic effects between SI and intraperitoneal injection of edaravone (IP) involved in cerebral edema, blood–brain barrier (BBB) permeability, hematoma absorption, inflammatory response and neuronal apoptosis. Results Compared with IP, the mNSS was significantly (P < 0.05) improved by SI; cerebral edema and BBB permeability were dramatically ameliorated (P < 0.05); IL‐4 and IL‐10 levels increased, but IL‐1β and TNF‐α levels significantly decreased; neuron apoptosis decreased markedly (P < 0.05); and caspase‐3 and Bax expression significantly dropped, but Bcl‐2 increased in SI group (P < 0.05). Conclusion SI markedly improved neurological deficits in ICH rat models via antiinflammatory and antiapoptosis mechanisms and promoted M2‐type microglia differentiation. SI was effective in rats with collagenase‐induced ICH.
Collapse
Affiliation(s)
- Yan Zhang
- The Third Military Medical University, Chongqing, China.,Affiliated Bayi Brain Hospital, Army General Hospital of PLA, Beijing, China.,The Neurosurgical Research Center of Beijing Military Region, Beijing, China
| | - Yang Yang
- Affiliated Bayi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | - Guang-Zhu Zhang
- Affiliated Bayi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | - Mou Gao
- Affiliated Bayi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | - Guang-Zhi Ge
- Affiliated Bayi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | - Qin-Qin Wang
- Affiliated Bayi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | - Xin-Chao Ji
- Affiliated Bayi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | - Yi-Lin Sun
- Department of Ultrapathology of Beijing Neurosurgical Institute, Beijing, China
| | - Hong-Tian Zhang
- Affiliated Bayi Brain Hospital, Army General Hospital of PLA, Beijing, China. .,The Neurosurgical Research Center of Beijing Military Region, Beijing, China.
| | - Ru-Xiang Xu
- Affiliated Bayi Brain Hospital, Army General Hospital of PLA, Beijing, China. .,The Neurosurgical Research Center of Beijing Military Region, Beijing, China.
| |
Collapse
|
6
|
Tang DQ, Li YJ, Li Z, Bian TT, Chen K, Zheng XX, Yu YY, Jiang SS. Study on the interaction of plasma protein binding rate between edaravone and taurine in human plasma based on HPLC analysis coupled with ultrafiltration technique. Biomed Chromatogr 2014; 29:1137-45. [DOI: 10.1002/bmc.3401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/16/2014] [Accepted: 10/31/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Dao-quan Tang
- Department of Pharmaceutical Analysis; Xuzhou Medical College; Xuzhou Jiangsu 221004 China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou Jiangsu 221004 China
| | - Yin-jie Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou Jiangsu 221004 China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou Jiangsu 221004 China
| | - Ting-ting Bian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou Jiangsu 221004 China
| | - Kai Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou Jiangsu 221004 China
| | - Xiao-xiao Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou Jiangsu 221004 China
| | - Yan-yan Yu
- Department of Pharmaceutical Analysis; Xuzhou Medical College; Xuzhou Jiangsu 221004 China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou Jiangsu 221004 China
| | - Shui-shi Jiang
- Nanjing Yoko Pharmaceutical Co. Ltd; Nanjing Jiangsu 210046 China
| |
Collapse
|
7
|
Enhancement of Autophagy by Histone Deacetylase Inhibitor Trichostatin A Ameliorates Neuronal Apoptosis After Subarachnoid Hemorrhage in Rats. Mol Neurobiol 2014; 53:18-27. [PMID: 25399954 DOI: 10.1007/s12035-014-8986-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 01/24/2023]
Abstract
Trichostatin A (TSA), a pan-histone deacetylase inhibitor, exerts multiple neuroprotective properties. This study aims to examine whether TSA could enhance autophagy, thereby reduce neuronal apoptosis and ultimately attenuate early brain injury (EBI) following subarachnoid hemorrhage (SAH). SAH was performed through endovascular perforation method, and mortality, neurological score, and brain water content were evaluated at 24 h after surgery. Western blot were used for quantification of acetylated histone H3, LC3-II, LC3-I, Beclin-1, cytochrome c, Bax, and cleaved caspase-3 expression. Immunofluorescence was performed for colocalization of Beclin-1 and neuronal nuclei (NeuN). Apoptotic cell death of neurons was quantified with double staining of terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL) and NeuN. The autophagy inhibitor 3-methyladenine (3-MA) was used to manipulate the proposed pathway. Our results demonstrated that TSA reduced brain edema and alleviated neurological deficits at 24 h after SAH. TSA significantly increased acetylated histone H3, the LC3-II/LC3-I ratio, and Beclin-1 while decreased Bax and cleaved caspase-3 in the cortex. Beclin-1 and NeuN, TUNEL, and NeuN, respectively, were colocalized in cortical cells. Neuronal apoptosis in the ipsilateral basal cortex was significantly inhibited after TSA treatment. Conversely, 3-MA reversed the beneficial effects of TSA. These results proposed that TSA administration enhanced autophagy, which contributes to alleviation of neuronal apoptosis, improvement of neurological function, and attenuation of EBI following SAH.
Collapse
|
8
|
Shang H, Cui D, Yang D, Liang S, Zhang W, Zhao W. The radical scavenger edaravone improves neurologic function and perihematomal glucose metabolism after acute intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2014; 24:215-22. [PMID: 25440340 DOI: 10.1016/j.jstrokecerebrovasdis.2014.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/29/2014] [Accepted: 08/22/2014] [Indexed: 12/30/2022] Open
Abstract
Oxidative injury caused by reactive oxygen species plays an important role in the progression of intracerebral hemorrhage (ICH)-induced secondary brain injury. Previous studies have demonstrated that the free radical scavenger edaravone may prevent neuronal injury and brain edema after ICH. However, the influence of edaravone on cerebral metabolism in the early stages after ICH and the underlying mechanism have not been fully investigated. In the present study, we investigated the effect of edaravone on perihematomal glucose metabolism using (18)F-fluorordeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). Additionally, the neurologic deficits, brain edemas, and cell death that followed ICH were quantitatively analyzed. After blood infusion, the rats treated with edaravone showed significant improvement in both forelimb placing and corner turn tests compared with those treated with vehicle. Moreover, the brain water content of the edaravone-treated group was significantly decreased compared with that of the vehicle group on day 3 after ICH. PET/CT images of ICH rats exhibited obvious decreases in FDG standardized uptake values in perihematomal region on day 3, and the lesion-to-normal ratio of the edaravone-treated ICH rats was significantly increased compared with that of the control rats. Calculation of the brain injury volumes from the PET/CT images revealed that the volumes of the blood-induced injuries were significantly smaller in the edaravone group compared with the vehicle group. Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling assays performed 3 days after ICH revealed that the numbers of apoptotic cells in perihematomal region of edaravone-treated ICH rats were decreased relative to the vehicle group. Thus, the present study demonstrates that edaravone has scavenging properties that attenuate neurologic behavioral deficits and brain edema in the early period of ICH. Additionally, edaravone may improve cerebral metabolism around the hematoma by attenuating apoptotic cell death after ICH.
Collapse
Affiliation(s)
- Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Derong Cui
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dehua Yang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Liang
- Department of Nuclear Medicine and Micro PET/CT Research Center, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Zhang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Laird MD, Shields JS, Sukumari-Ramesh S, Kimbler DE, Fessler RD, Shakir B, Youssef P, Yanasak N, Vender JR, Dhandapani KM. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4. Glia 2013; 62:26-38. [PMID: 24166800 DOI: 10.1002/glia.22581] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Cerebral edema, a life-threatening medical complication, contributes to elevated intracranial pressure (ICP) and a poor clinical prognosis after TBI. Unfortunately, treatment options to reduce post-traumatic edema remain suboptimal, due in part, to a dearth of viable therapeutic targets. Herein, we tested the hypothesis that cerebral innate immune responses contribute to edema development after TBI. Our results demonstrate that high-mobility group box protein 1 (HMGB1) was released from necrotic neurons via a NR2B-mediated mechanism. HMGB1 was clinically associated with elevated ICP in patients and functionally promoted cerebral edema after TBI in mice. The detrimental effects of HMGB1 were mediated, at least in part, via activation of microglial toll-like receptor 4 (TLR4) and the subsequent expression of the astrocytic water channel, aquaporin-4 (AQP4). Genetic or pharmacological (VGX-1027) TLR4 inhibition attenuated the neuroinflammatory response and limited post-traumatic edema with a delayed, clinically implementable therapeutic window. Human and rodent tissue culture studies further defined the cellular mechanisms demonstrating neuronal HMGB1 initiates the microglial release of interleukin-6 (IL-6) in a TLR4 dependent mechanism. In turn, microglial IL-6 increased the astrocytic expression of AQP4. Taken together, these data implicate microglia as key mediators of post-traumatic brain edema and suggest HMGB1-TLR4 signaling promotes neurovascular dysfunction after TBI.
Collapse
Affiliation(s)
- Melissa D Laird
- Department of Neurosurgery, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ozgiray E, Serarslan Y, Oztürk OH, Altaş M, Aras M, Söğüt S, Yurtseven T, Oran I, Zileli M. Protective effects of edaravone on experimental spinal cord injury in rats. Pediatr Neurosurg 2011; 47:254-60. [PMID: 22310070 DOI: 10.1159/000335400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 11/24/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a leading cause of morbidity and mortality among youth and adults. Secondary injury mechanisms within the spinal cord (SC) are well known to cause deterioration after an acute impact. Free radical scavengers are among the most studied agents in animal models of SCI. Edaravone is a scavenger of hydroxyl radicals. METHODS We aimed to measure and compare the effects of both methylprednisolone and edaravone on tissue and on serum concentrations of nitric oxide (NO), malondialdehyde (MDA) levels, superoxide dismutase (SOD) activity, glutathione peroxidase (GSH-Px) activity, and tissue total antioxidant capacity (TAC) in rats with SCI. SCI was induced in four groups of Wistar albino rats by a weight-drop method. The neurological function of the rats was periodically tested. At the end of the experiment, blood samples were collected, and SC tissue samples were harvested for biochemical evaluation. RESULTS The tissue level of NO was decreased in the edaravone-treated group compared with the no-treatment group (p < 0.05). The tissue levels of SOD and GSH-Px were higher in the edaravone-treated group than in the no-treatment group (p < 0.05). The serum levels of NO were lower in the edaravone-treated and methylprednisolone-treated groups than in the no-treatment group (p < 0.05). The serum levels of SOD in the edaravone-treated group did not differ from those of any other group. The serum levels of MDA in the edaravone-treated and no-treatment groups were higher than in the two other groups (p < 0.05). Tissue levels of MDA in the edaravone-treated group were lower than in the no-treatment group (p < 0.05). Tissue levels of TAC in the edaravone-treated group were higher than in the no-treatment and methylprednisolone-treated groups (p < 0.05). The neurological outcome scores of the animals in treatment groups did not depict any statistically significant improvement in motor functions. However, edaravone seemed to prevent further worsening of the immediate post-SCI neurological status. CONCLUSION Our biochemical analyses indicate that edaravone is capable of blunting the increased oxidative stress that follows SCI. We show, for the first time, that edaravone enhances the TAC in SC tissue. This beneficial effect of edaravone on antioxidant status may act to minimize the secondary neurological damage that occurs during the acute phase after SCI.
Collapse
Affiliation(s)
- Erkin Ozgiray
- Department of Neurosurgery, Tayfur Ata Sökmen Medical Faculty, Mustafa Kemal University, Hatay, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|