1
|
Vinh To X, Kurniawan ND, Cumming P, Nasrallah FA. A cross-comparative analysis of in vivo versus ex vivo MRI indices in a mouse model of concussion. Brain Res 2023; 1820:148562. [PMID: 37673379 DOI: 10.1016/j.brainres.2023.148562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND We present a cross-sectional, case-matched, and pair-wise comparison of structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) measures in vivo and ex vivo in a mouse model of concussion, thus aiming to establish the concordance of structural and diffusion imaging findings in living brain and after fixation. METHODS We allocated 28 male mice aged 3-4 months to sham injury and concussion (CON) groups. CON mice had received a single concussive impact on day 0 and underwent MRI at day 2 (n = 9) or 7 (n = 10) post-impact, and sham control mice likewise underwent imaging at day 2 (n = 5) or 7 (n = 4). Immediately after the final scanning, we collected the perfusion-fixed brains, which were stored for imaging ex vivo 6-12 months later. We then compared the structural imaging, DTI, and NODDI results between different methods. RESULTS In vivo to ex vivo structural and DTI/NODDI findings were in notably poor agreement regarding the effects of concussion on structural integrity of the brain. COMPARISON WITH EXISTING METHODS ex vivo imaging was frequently done to study the effects of diseases and treatments, but our results showed that ex vivo and in vivo imaging can detect completely opposite and contradictory results. This is also the first study that compares in vivo and ex vivo NODDI. CONCLUSION Our findings call for caution in extrapolating translational capabilities obtained ex vivo to physiological measurements in vivo. The divergent findings may reflect fixation artefacts and the contribution of the glymphatic system changes.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Australia
| | | | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia.
| |
Collapse
|
2
|
Yang MH, Kim EH, Choi ES, Ko H. Comparison of Normative Percentiles of Brain Volume Obtained from NeuroQuant ® vs. DeepBrain ® in the Korean Population: Correlation with Cranial Shape. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2023; 84:1080-1090. [PMID: 37869130 PMCID: PMC10585089 DOI: 10.3348/jksr.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 10/24/2023]
Abstract
Purpose This study aimed to compare the volume and normative percentiles of brain volumetry in the Korean population using quantitative brain volumetric MRI analysis tools NeuroQuant® (NQ) and DeepBrain® (DB), and to evaluate whether the differences in the normative percentiles of brain volumetry between the two tools is related to cranial shape. Materials and Methods In this retrospective study, we analyzed the brain volume reports obtained from NQ and DB in 163 participants without gross structural brain abnormalities. We measured three-dimensional diameters to evaluate the cranial shape on T1-weighted images. Statistical analyses were performed using intra-class correlation coefficients and linear correlations. Results The mean normative percentiles of the thalamus (90.8 vs. 63.3 percentile), putamen (90.0 vs. 60.0 percentile), and parietal lobe (80.1 vs. 74.1 percentile) were larger in the NQ group than in the DB group, whereas that of the occipital lobe (18.4 vs. 68.5 percentile) was smaller in the NQ group than in the DB group. We found a significant correlation between the mean normative percentiles obtained from the NQ and cranial shape: the mean normative percentile of the occipital lobe increased with the anteroposterior diameter and decreased with the craniocaudal diameter. Conclusion The mean normative percentiles obtained from NQ and DB differed significantly for many brain regions, and these differences may be related to cranial shape.
Collapse
|
3
|
Yearley AG, Goedmakers CMW, Panahi A, Doucette J, Rana A, Ranganathan K, Smith TR. FDA-approved machine learning algorithms in neuroradiology: A systematic review of the current evidence for approval. Artif Intell Med 2023; 143:102607. [PMID: 37673576 DOI: 10.1016/j.artmed.2023.102607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Over the past decade, machine learning (ML) and artificial intelligence (AI) have become increasingly prevalent in the medical field. In the United States, the Food and Drug Administration (FDA) is responsible for regulating AI algorithms as "medical devices" to ensure patient safety. However, recent work has shown that the FDA approval process may be deficient. In this study, we evaluate the evidence supporting FDA-approved neuroalgorithms, the subset of machine learning algorithms with applications in the central nervous system (CNS), through a systematic review of the primary literature. Articles covering the 53 FDA-approved algorithms with applications in the CNS published in PubMed, EMBASE, Google Scholar and Scopus between database inception and January 25, 2022 were queried. Initial searches identified 1505 studies, of which 92 articles met the criteria for extraction and inclusion. Studies were identified for 26 of the 53 neuroalgorithms, of which 10 algorithms had only a single peer-reviewed publication. Performance metrics were available for 15 algorithms, external validation studies were available for 24 algorithms, and studies exploring the use of algorithms in clinical practice were available for 7 algorithms. Papers studying the clinical utility of these algorithms focused on three domains: workflow efficiency, cost savings, and clinical outcomes. Our analysis suggests that there is a meaningful gap between the FDA approval of machine learning algorithms and their clinical utilization. There appears to be room for process improvement by implementation of the following recommendations: the provision of compelling evidence that algorithms perform as intended, mandating minimum sample sizes, reporting of a predefined set of performance metrics for all algorithms and clinical application of algorithms prior to widespread use. This work will serve as a baseline for future research into the ideal regulatory framework for AI applications worldwide.
Collapse
Affiliation(s)
- Alexander G Yearley
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Caroline M W Goedmakers
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Armon Panahi
- The George Washington University School of Medicine and Health Sciences, 2300 I St NW, Washington, DC 20052, USA
| | - Joanne Doucette
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA 02115, USA
| | - Aakanksha Rana
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Kavitha Ranganathan
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | - Timothy R Smith
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| |
Collapse
|
4
|
Ross DE, Seabaugh JD, Seabaugh JM, Alvarez C, Ellis LP, Powell C, Reese C, Cooper L, Shepherd K, Alzheimer's Disease Neuroimaging Initiative FT. Journey to the other side of the brain: asymmetry in patients with chronic mild or moderate traumatic brain injury. Concussion 2022; 8:CNC101. [PMID: 36874877 PMCID: PMC9979152 DOI: 10.2217/cnc-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/01/2022] [Indexed: 02/01/2023] Open
Abstract
Aim Patients with chronic mild or moderate traumatic brain injury have some regions of brain atrophy (including cerebral white matter) but even more regions of abnormal brain enlargement (including other cerebral regions). Hypothesis Ipsilateral injury and atrophy cause the eventual development of contralateral compensatory hypertrophy. Materials & methods 50 patients with mild or moderate traumatic brain injury were compared to 80 normal controls (n = 80) with respect to MRI brain volume asymmetry. Asymmetry-based correlations were used to test the primary hypothesis. Results The group of patients had multiple regions of abnormal asymmetry. Conclusion The correlational analyses supported the conclusion that acute injury to ipsilateral cerebral white matter regions caused atrophy, leading eventually to abnormal enlargement of contralateral regions due to compensatory hypertrophy.
Collapse
Affiliation(s)
- David E Ross
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - John D Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - Jan M Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - Claudia Alvarez
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, Randolph Macon College, Ashland, VA 23005, USA
| | - Laura Peyton Ellis
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, Randolph Macon College, Ashland, VA 23005, USA
| | - Christopher Powell
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23219, USA
| | - Christopher Reese
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, University of North Carolina at Wilmington, Wilmington, NC 28403, USA
| | - Leah Cooper
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Katherine Shepherd
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, James Madison University, Harrisonburg, VA 22807, USA
| | - For The Alzheimer's Disease Neuroimaging Initiative
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.,Neuroscience Department, Randolph Macon College, Ashland, VA 23005, USA.,Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23219, USA.,Neuroscience Department, University of North Carolina at Wilmington, Wilmington, NC 28403, USA.,Neuroscience Department, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA.,Neuroscience Department, James Madison University, Harrisonburg, VA 22807, USA
| |
Collapse
|
5
|
Barcelona J, Ross DE, Seabaugh JD, Seabaugh JM. Abnormal asymmetry correlates with abnormal enlargement in a patient with chronic moderate traumatic brain injury. Concussion 2022; 7:CNC96. [PMID: 36262480 PMCID: PMC9219597 DOI: 10.2217/cnc-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Aim: Recent studies found patients with chronic, mild or moderate traumatic brain injury had more regions of enlargement than atrophy. There is little research discussing brain volume enlargement, asymmetry and TBI. Materials & methods: In this report, we describe a 40-year-old man who suffered a left cerebral hemorrhage resulting in a moderate TBI, suggesting greater forces on the left side of his brain. NeuroQuant® brain volumetric analyses of his MRI obtained 1.7 years post injury showed left cerebral white matter atrophy but right gray matter abnormal enlargement. Abnormal asymmetry of multiple regions (R >L) was confirmed by NeuroGage® asymmetry analyses. Discussion: The findings suggested that abnormal brain volume enlargement was due to hyperactivity and hypertrophy of less-injured brain regions as a compensatory response to more-injured regions.
Collapse
Affiliation(s)
- Justis Barcelona
- Department of Research, Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - David E Ross
- Department of Research, Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - John D Seabaugh
- Department of Research, Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| | - Jan M Seabaugh
- Department of Research, Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA
| |
Collapse
|
6
|
Ross DE, Seabaugh J, Seabaugh JM, Barcelona J, Seabaugh D, Wright K, Norwind L, King Z, Graham TJ, Baker J, Lewis T. Updated Review of the Evidence Supporting the Medical and Legal Use of NeuroQuant ® and NeuroGage ® in Patients With Traumatic Brain Injury. Front Hum Neurosci 2022; 16:715807. [PMID: 35463926 PMCID: PMC9027332 DOI: 10.3389/fnhum.2022.715807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Over 40 years of research have shown that traumatic brain injury affects brain volume. However, technical and practical limitations made it difficult to detect brain volume abnormalities in patients suffering from chronic effects of mild or moderate traumatic brain injury. This situation improved in 2006 with the FDA clearance of NeuroQuant®, a commercially available, computer-automated software program for measuring MRI brain volume in human subjects. More recent strides were made with the introduction of NeuroGage®, commercially available software that is based on NeuroQuant® and extends its utility in several ways. Studies using these and similar methods have found that most patients with chronic mild or moderate traumatic brain injury have brain volume abnormalities, and several of these studies found-surprisingly-more abnormal enlargement than atrophy. More generally, 102 peer-reviewed studies have supported the reliability and validity of NeuroQuant® and NeuroGage®. Furthermore, this updated version of a previous review addresses whether NeuroQuant® and NeuroGage® meet the Daubert standard for admissibility in court. It concludes that NeuroQuant® and NeuroGage® meet the Daubert standard based on their reliability, validity, and objectivity. Due to the improvements in technology over the years, these brain volumetric techniques are practical and readily available for clinical or forensic use, and thus they are important tools for detecting signs of brain injury.
Collapse
Affiliation(s)
- David E. Ross
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - John Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Radiology, St. Mary’s Hospital School of Medical Imaging, Richmond, VA, United States
| | - Jan M. Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
| | - Justis Barcelona
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
| | - Daniel Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
| | - Katherine Wright
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - Lee Norwind
- Karp, Wigodsky, Norwind, Kudel & Gold, P.A., Rockville, MD, United States
| | - Zachary King
- Karp, Wigodsky, Norwind, Kudel & Gold, P.A., Rockville, MD, United States
| | | | - Joseph Baker
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Neuroscience, Christopher Newport University, Newport News, VA, United States
| | - Tanner Lewis
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Undergraduate Studies, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
7
|
Ross DE, Seabaugh JD, Seabaugh JM, Plumley J, Ha J, Burton JA, Vandervaart A, Mischel R, Blount A, Seabaugh D, Shepherd K, Barcelona J, Ochs AL. Patients with chronic mild or moderate traumatic brain injury have abnormal longitudinal brain volume enlargement more than atrophy. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211018049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Many studies have found brain atrophy in patients with traumatic brain injury (TBI), but most of those studies examined patients with moderate or severe TBI. A few recent studies in patients with chronic mild or moderate TBI found abnormally large brain volume. Some of these studies used NeuroQuant®, FDA-cleared software for measuring MRI brain volume. It is not known if the abnormal enlargement occurs before or after injury. The purpose of the current study was to test the hypothesis that it occurs after injury. Methods 55 patients with chronic mild or moderate TBI were compared to NeuroQuant® normal controls ( n > 4000) with respect to MRI brain volume change from before injury (time 0 [t0], estimated volume) to after injury (t1, measured volume). A subset of 36 patients were compared to the normal controls with respect to longitudinal change of brain volume after injury from t1 to t2. Results The patients had abnormally fast increase of brain volume for multiple brain regions, including whole brain, cerebral cortical gray matter, and subcortical regions. Discussion This is the first report of extensive abnormal longitudinal brain volume enlargement in patients with TBI. In particular, the findings suggested that the previously reported findings of cross-sectional brain volume abnormal enlargement were due to longitudinal enlargement after, not before, injury. Abnormal longitudinal enlargement of the posterior cingulate cortex correlated with neuropathic headaches, partially replicating a previously reported finding that was associated with neuroinflammation.
Collapse
Affiliation(s)
- David E Ross
- Virginia Institute of Neuropsychiatry, Midlothian, USA
| | | | | | | | - Junghoon Ha
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Jason A Burton
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | | | - Ryan Mischel
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Alyson Blount
- Randolph Macon College, Undergraduate Program, Ashland, USA
| | | | - Katherine Shepherd
- Virginia Institute of Neuropsychiatry, Midlothian, USA
- James Madison University, Undergraduate Program, Harrisonburg, USA
| | | | - Alfred L Ochs
- Virginia Institute of Neuropsychiatry, Midlothian, USA
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | | |
Collapse
|
8
|
Baumgartner JE, Baumgartner LS, Baumgartner ME, Moore EJ, Messina SA, Seidman MD, Shook DR. Progenitor cell therapy for acquired pediatric nervous system injury: Traumatic brain injury and acquired sensorineural hearing loss. Stem Cells Transl Med 2021; 10:164-180. [PMID: 33034162 PMCID: PMC7848325 DOI: 10.1002/sctm.20-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
While cell therapies hold remarkable promise for replacing injured cells and repairing damaged tissues, cell replacement is not the only means by which these therapies can achieve therapeutic effect. For example, recent publications show that treatment with varieties of adult, multipotent stem cells can improve outcomes in patients with neurological conditions such as traumatic brain injury and hearing loss without directly replacing damaged or lost cells. As the immune system plays a central role in injury response and tissue repair, we here suggest that multipotent stem cell therapies achieve therapeutic effect by altering the immune response to injury, thereby limiting damage due to inflammation and possibly promoting repair. These findings argue for a broader understanding of the mechanisms by which cell therapies can benefit patients.
Collapse
Affiliation(s)
- James E. Baumgartner
- Advent Health for ChildrenOrlandoFloridaUSA
- Department of Neurological SurgeryUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | | | - Ernest J. Moore
- Department of Audiology and Speech Language PathologyUniversity of North TexasDentonTexasUSA
| | | | - Michael D. Seidman
- Advent Health CelebrationCelebrationFloridaUSA
- Department of OtorhinolaryngologyUniversity of Central FloridaOrlandoFloridaUSA
| | | |
Collapse
|
9
|
To XV, Nasrallah FA. A roadmap of brain recovery in a mouse model of concussion: insights from neuroimaging. Acta Neuropathol Commun 2021; 9:2. [PMID: 33407949 PMCID: PMC7789702 DOI: 10.1186/s40478-020-01098-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Concussion or mild traumatic brain injury is the most common form of traumatic brain injury with potentially long-term consequences. Current objective diagnosis and treatment options are limited to clinical assessment, cognitive rest, and symptom management, which raises the real danger of concussed patients being released back into activities where subsequent and cumulative injuries may cause disproportionate damages. This study conducted a cross-sectional multi-modal examination investigation of the temporal changes in behavioural and brain changes in a mouse model of concussion using magnetic resonance imaging. Sham and concussed mice were assessed at day 2, day 7, and day 14 post-sham or injury procedures following a single concussion event for motor deficits, psychological symptoms with open field assessment, T2-weighted structural imaging, diffusion tensor imaging (DTI), neurite orientation density dispersion imaging (NODDI), stimulus-evoked and resting-state functional magnetic resonance imaging (fMRI). Overall, a mismatch in the temporal onsets and durations of the behavioural symptoms and structural/functional changes in the brain was seen. Deficits in behaviour persisted until day 7 post-concussion but recovered at day 14 post-concussion. DTI and NODDI changes were most extensive at day 7 and persisted in some regions at day 14 post-concussion. A persistent increase in connectivity was seen at day 2 and day 14 on rsfMRI. Stimulus-invoked fMRI detected increased cortical activation at day 7 and 14 post-concussion. Our results demonstrate the capabilities of advanced MRI in detecting the effects of a single concussive impact in the brain, and highlight a mismatch in the onset and temporal evolution of behaviour, structure, and function after a concussion. These results have significant translational impact in developing methods for the detection of human concussion and the time course of brain recovery.
Collapse
|
10
|
Lee J, Lee JY, Oh SW, Chung MS, Park JE, Moon Y, Jeon HJ, Moon WJ. Evaluation of Reproducibility of Brain Volumetry between Commercial Software, Inbrain and Established Research Purpose Method, FreeSurfer. J Clin Neurol 2021; 17:307-316. [PMID: 33835753 PMCID: PMC8053534 DOI: 10.3988/jcn.2021.17.2.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/18/2023] Open
Abstract
Background and Purpose We aimed to determine the intermethod reproducibility between the commercial software Inbrain (MIDAS IT) and the established research-purpose method FreeSurfer, as well as the effect of MRI resolution and the pathological condition of subjects on their intermethod reproducibility. Methods This study included 45 healthy volunteers and 85 patients with mild cognitive impairment (MCI). In 43 of the 85 patients with MCI, three-dimensional, T1-weighted MRI data were obtained at an in-plane resolution of 1.2 mm. The data of the remaining 42 patients with MCI and the healthy volunteers were obtained at an in-plane resolution of 1.0 mm. The within-subject coefficient of variation (CoV), intraclass correlation coefficient (ICC), and effect size were calculated, and means were compared using paired t-tests. The parameters obtained at 1.0-mm and 1.2-mm resolutions in patients with MCI were compared to evaluate the effect of the in-plane resolution on the intermethod reproducibility. The parameters obtained at a 1.0-mm in-plane resolution in patients with MCI and healthy volunteers were used to analyze the effect of subject condition on intermethod reproducibility. Results Overall the two methods showed excellent reproducibility across all regions of the brain (CoV=0.5–3.9, ICC=0.93 to >0.99). In the subgroup of healthy volunteers, the intermethod reliability was only good in some regions (frontal, temporal, cingulate, and insular). The intermethod reproducibility was better in the 1.0-mm group than the 1.2-mm group in all regions other than the nucleus accumbens. Conclusions Inbrain and FreeSurfer showed good-to-excellent intermethod reproducibility for volumetric measurements. Nevertheless, some noticeable differences were found based on subject condition, image resolution, and brain region.
Collapse
Affiliation(s)
- Jungbin Lee
- Department of Radiology, Soonchunghyang University Bucheon Hospital, Bucheon, Korea
| | - Ji Young Lee
- Department of Radiology, Hanyang University Medical Center, Seoul, Korea
| | - Se Won Oh
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Mi Sun Chung
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology, Asan Medical Center, Seoul, Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Hong Jun Jeon
- Department of Psychiatry, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Won Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Lee JY, Park JE, Chung MS, Oh SW, Moon WJ. Expert Opinions and Recommendations for the Clinical Use of Quantitative Analysis Software for MRI-Based Brain Volumetry. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2021; 82:1124-1139. [PMID: 36238415 PMCID: PMC9432367 DOI: 10.3348/jksr.2020.0174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/31/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022]
Abstract
치매를 비롯한 퇴행성 신경 질환의 초기 진단에 자기공명영상을 이용한 뇌 위축 평가와 정량적 용적 분석이 중요하다. 뇌 위축의 시각적 평가는 주관적으로 평가자에 따라 다른 결과를 보여주기 때문에, 객관적인 결과를 제공하면서 임상 적용도 가능한 소프트웨어의 수요와 개발이 늘어나고 있다. 이러한 임상용 소프트웨어의 실제 임상 적용은 영상 검사의 표준화가 선행되어야 하고, 개발된 소프트웨어의 검증이 반드시 필요하다. 따라서 대한신경두경부영상의학회는 뇌용적 분석 임상용 소프트웨어의 임상적 활용에 대한 의견을 제시하기 위해 전문위원회를 구성하고 현재까지 발표된 연구를 정리하였다. 그리고, 정량화 분석을 위한 영상 검사의 표준화 및 소프트웨어의 임상 적용에 대한 전문가 의견을 제시하기 위하여 공동 작업을 수행하였다. 본 종설에서는 뇌 자기공명영상의 정량화 분석의 필요성 및 배경, 정량화 분석을 위한 임상용 소프트웨어의 소개 및 기존의 표준품(reference standard)과의 진단능 비교, 영상 획득의 표준화, 분석 및 평가의 표준화, 소프트웨어의 임상 적용에 대한 전문가 의견, 제한점 및 대처 방법 등 대한신경두경부영상의학회의 전문가 권고안을 소개하는 것이 목적이다.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Radiology, Hanyang University Medical Center, Hanyang University Medical College, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi Sun Chung
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Se Won Oh
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | | |
Collapse
|
12
|
Lee JY, Oh SW, Chung MS, Park JE, Moon Y, Jeon HJ, Moon WJ. Clinically Available Software for Automatic Brain Volumetry: Comparisons of Volume Measurements and Validation of Intermethod Reliability. Korean J Radiol 2020; 22:405-414. [PMID: 33236539 PMCID: PMC7909859 DOI: 10.3348/kjr.2020.0518] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To compare two clinically available MR volumetry software, NeuroQuant® (NQ) and Inbrain® (IB), and examine the inter-method reliabilities and differences between them. MATERIALS AND METHODS This study included 172 subjects (age range, 55-88 years; mean age, 71.2 years), comprising 45 normal healthy subjects, 85 patients with mild cognitive impairment, and 42 patients with Alzheimer's disease. Magnetic resonance imaging scans were analyzed with IB and NQ. Mean differences were compared with the paired t test. Inter-method reliability was evaluated with Pearson's correlation coefficients and intraclass correlation coefficients (ICCs). Effect sizes were also obtained to document the standardized mean differences. RESULTS The paired t test showed significant volume differences in most regions except for the amygdala between the two methods. Nevertheless, inter-method measurements between IB and NQ showed good to excellent reliability (0.72 < r < 0.96, 0.83 < ICC < 0.98) except for the pallidum, which showed poor reliability (left: r = 0.03, ICC = 0.06; right: r = -0.05, ICC = -0.09). For the measurements of effect size, volume differences were large in most regions (0.05 < r < 6.15). The effect size was the largest in the pallidum and smallest in the cerebellum. CONCLUSION Comparisons between IB and NQ showed significantly different volume measurements with large effect sizes. However, they showed good to excellent inter-method reliability in volumetric measurements for all brain regions, with the exception of the pallidum. Clinicians using these commercial software should take into consideration that different volume measurements could be obtained depending on the software used.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Radiology, Hanyang University Medical Center, Seoul, Korea
| | - Se Won Oh
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi Sun Chung
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology, Asan Medical Center, Seoul, Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Hong Jun Jeon
- Department of Psychiatry, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Won Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Ross DE, Seabaugh JD, Seabaugh JM, Alvarez C, Ellis LP, Powell C, Hall C, Reese C, Cooper L, Ochs AL. Patients with chronic mild or moderate traumatic brain injury have abnormal brain enlargement. Brain Inj 2019; 34:11-19. [DOI: 10.1080/02699052.2019.1669074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- David E. Ross
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
| | | | | | - Claudia Alvarez
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Randolph Macon College, Ashland, VA, USA
| | - Laura Peyton Ellis
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Randolph Macon College, Ashland, VA, USA
| | - Christopher Powell
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher Hall
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- University of Virginia, Charlottesville, VA, USA
| | - Christopher Reese
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- University of North Carolina at Wilmington, Wilmington, NC, USA
| | - Leah Cooper
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alfred L. Ochs
- Virginia Institute of Neuropsychiatry, Midlothian, VA, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|