1
|
Pavilionis P, Adhanom IB, Moran R, Taylor MR, Murray NG. Virtual Reality Application for Vestibular/Ocular Motor Screening: Current Clinical Protocol Versus a Novel Prototype. Sports Health 2024; 16:407-413. [PMID: 36988294 PMCID: PMC11025519 DOI: 10.1177/19417381231163158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Virtual reality (VR) has been explored to improve baseline and postinjury assessments in sport-related concussion (SRC). Some experience symptoms related to VR, unrelated to concussion. This may deter use of vestibular/ocular motor screening (VOMS) using VR. Baseline VR VOMS symptomatology differentiates baseline from overall symptomatology. HYPOTHESIS There will be no difference between current clinical manual VOMS (MAN), a clinical prototype (PRO), and VR for symptom provocation change score (SPCS) and near point of convergence (NPC) average score in a healthy population and sex differences among the 3 modes of administration. STUDY DESIGN Cohort study. LEVEL OF EVIDENCE Level 3. METHODS A total of 688 National Collegiate Athletic Association Division I student-athletes completed VOMS using 3 methods (MAN, N = 111; female athletes, N = 47; male athletes, N = 64; average age, 21 years; PRO, N = 365; female athletes, N = 154; male athletes, N = 211; average age, 21 years; VR, N = 212; female athletes, N = 78; male athletes, N = 134; average age = 20 years) over a 3-year period (2019-2021) during annual baseline testing. Exclusion criteria were as follows: self-reported motion sickness in the past 6 months, existing or previous neurological insult, attention deficit hyperactivity disorder, learning disabilities, or noncorrected vision impairment. Administration of MAN followed the current clinical protocols, PRO used a novel prototype, and VR used an HTC Vive Pro Eye head mounted display. Symptom provocation was compared using Mann-Whitney U tests across each VOMS subtest with total SPCS and NPC average by each method. RESULTS MAN had significantly (P < 0.01) more baseline SPCS (MAN = 0.466 ± 1.165, PRO = 0.163 ± 0.644, VR = 0.161 ± 0.933) and significantly (P < 0.01) and more SPCS (MAN = 0.396 ± 1.081, PRO = 0.128 ± 0.427, VR = 0.48 ± 0.845) when compared with PRO and VR. NPC average measurements for VR (average, 2.99 ± 0.684 cm) were significantly greater than MAN (average, 2.91 ± 3.35 cm; P < 0.01; Cohen's d = 0.03) and PRO (average, 2.21 ± 1.81 cm; P < 0.01; Cohen's d = 0.57). For sex differences, female athletes reported greater SPCS with PRO (female athletes, 0.29 ± 0.87; male athletes, 0.06 ± 0.29; P < 0.01) but not in VR or MAN. CONCLUSION Using a VR system to administer the VOMS may not elicit additional symptoms, resulting in fewer false positives and is somewhat stable between sexes. CLINICAL RELEVANCE VOMS may allow for standardization among administrators and reduce possible false positives.
Collapse
Affiliation(s)
- Philip Pavilionis
- Neuromechanics Laboratory, School of Public Health, University of Nevada, Reno, Nevada
| | - Isayas Berhe Adhanom
- Computer Science and Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Ryan Moran
- Athletic Training Research Laboratory, The University of Alabama, Tuscaloosa, Alabama
| | - Madison R. Taylor
- Neuromechanics Laboratory, School of Public Health, University of Nevada, Reno, Nevada
| | - Nicholas G. Murray
- Neuromechanics Laboratory, School of Public Health, University of Nevada, Reno, Nevada
| |
Collapse
|
2
|
Burma JS, Van Roessel RK, Oni IK, Dunn JF, Smirl JD. Neurovascular coupling on trial: How the number of trials completed impacts the accuracy and precision of temporally derived neurovascular coupling estimates. J Cereb Blood Flow Metab 2022; 42:1478-1492. [PMID: 35209741 PMCID: PMC9274868 DOI: 10.1177/0271678x221084400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Standard practices for quantifying neurovascular coupling (NVC) with transcranial Doppler ultrasound (TCD) require participants to complete one-to-ten repetitive trials. However, limited empirical evidence exists regarding how the number of trials completed influences the validity and reliability of temporally derived NVC metrics. Secondary analyses was performed on 60 young healthy participants (30 females/30 males) who completed eight cyclical eyes-closed (20-seconds), eyes-open (40-seconds) NVC trials, using the "Where's Waldo?" visual paradigm. TCD data was obtained in posterior and middle cerebral arteries (PCA and MCA, respectively). The within-day (n = 11) and between-day (n = 17) reliability were assessed at seven- and three-time points, respectively. Repeat testing from the reliability aims were also used for the concurrent validity analysis (n = 160). PCA metrics (i.e., baseline, peak, percent increase, and area-under-the-curve) demonstrated five trials produced excellent intraclass correlation coefficient (ICC) 95% confidence intervals for validity and within-day reliability (>0.900), whereas between-day reliability was good-to-excellent (>0.750). Likewise, 95% confidence intervals for coefficient of variation (CoV) measures ranged from acceptable (<20%) to excellent (<5%) with five-or-more trials. Employing fewer than five trials produced poor/unacceptable ICC and CoV metrics. Future NVC, TCD-based research should therefore have participants complete a minimum of five trials when quantifying the NVC response with TCD via a "Where's Waldo?" paradigm.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Rowan K Van Roessel
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Ibukunoluwa K Oni
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Worts PR, Mason JR, Burkhart SO, Sanchez-Gonzalez MA, Kim JS. The acute, systemic effects of aerobic exercise in recently concussed adolescent student-athletes: preliminary findings. Eur J Appl Physiol 2022; 122:1441-1457. [PMID: 35303160 DOI: 10.1007/s00421-022-04932-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Examine the acute effects (pre-, during, post-intervention) of two different intensities of aerobic exercise or rest on autonomic, oculomotor, and vestibular function and symptom burden in patients with a recent sport-related concussion (SRC) and compare their responses to sex-matched, age-stratified, non-concussed (HEALTHY) student-athletes. METHODS Student-athletes between the ages of 13 and 18 that presented to the sports medicine clinic within Day 3-7 post-SRC and from local schools were recruited for a randomized controlled trial (RCT). The participants were administered the Vestibular/Ocular Motor Screening (VOMS), King-Devick (K-D), and Post-Concussion Symptom Scale (PCSS) before and after the intervention. Heart rate variability (HRV) and mean arterial pressure (MAP) were collected before, during, and after the intervention. The intervention was either a single, 20-min session of treadmill walking at 40% (40HR) or 60% of age-predicted max heart rate (60HR), or seated, rest (NOEX). RESULTS 30 participants completed the intervention with the SRC group treated 4.5 ± 1.3 days post-injury. Pre-exercise HRV and MAP were significantly different (p's < 0.001) during treatment but returned to pre-exercise values within 5 min of recovery in both the SRC and HEALTHY groups. Both the SRC and HEALTHY groups exhibited similar reductions pre- to post-intervention for symptom severity and count (p's < 0.05), three VOMS items (p's < 0.05) but not K-D time. CONCLUSIONS To date, this is the first adolescent RCT to report the acute, systemic effects of aerobic exercise on recently concussed adolescent athletes. The interventions appeared safe in SRC participants, were well-tolerated, and provided brief therapeutic benefit. TRIAL REGISTRATION Clinicaltrials.gov Identifier NCT03575455.
Collapse
Affiliation(s)
- P R Worts
- Tallahassee Orthopedic Clinic, Tallahassee, FL, USA. .,Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA. .,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA.
| | - J R Mason
- Department of Occupational Therapy, University of Florida, Gainesville, FL, USA
| | - S O Burkhart
- Children's Health Andrews Institute, Plano, TX, USA.,Department of Psychiatry, University of Texas Southwestern, Dallas, TX, USA
| | | | - J-S Kim
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA.,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
4
|
Labrecque L, Burma JS, Roy MA, Smirl JD, Brassard P. Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women. J Appl Physiol (1985) 2021; 132:154-166. [PMID: 34855525 DOI: 10.1152/japplphysiol.00653.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebral pressure-flow relationship has directional sensitivity, meaning the augmentation in cerebral blood flow is attenuated when mean arterial pressure (MAP) increases vs MAP decreases. We employed repeated squat-stands (RSS) to quantify it using a novel metric. However, its within-day reproducibility and the impacts of diurnal variation and biological sex are unknown. Study aims were to evaluate this metric for: 1) within-day reproducibility and diurnal variation in middle (MCA; ∆MCAvT/∆MAPT) and posterior cerebral arteries (PCA; ∆PCAvT/∆MAPT); 2) sex differences. ∆MCAvT/∆MAPT and ∆PCAvT/∆MAPT were calculated at seven time-points (08:00-17:00) in 18 participants (8 women; 24 ± 3 yrs) using the minimum-to-maximum MCAv or PCAv and MAP for each RSS at 0.05 Hz and 0.10 Hz. Relative metric values were also calculated (%MCAvT/%MAPT, %PCAvT/%MAPT). Intraclass correlation coefficient (ICC) evaluated reproducibility, which was good (0.75-0.90) to excellent (>0.90). Time-of-day impacted ∆MCAvT/∆MAPT (0.05 Hz: p = 0.002; 0.10 Hz: p = 0.001), %MCAvT/%MAPT (0.05 Hz: p = 0.035; 0.10 Hz: p = 0.009), and ∆PCAvT/∆MAPT (0.05 Hz: p = 0.024), albeit with small/negligible effect sizes. MAP direction impacted both arteries' metric at 0.10 Hz (all p < 0.024). Sex differences in the MCA only (p = 0.003) vanished when reported in relative terms. These findings demonstrate this metric is reproducible throughout the day in the MCA and PCA and is not impacted by biological sex.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Jonathan David Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
5
|
Yang Y, Chen Z. NEUROMUSCULAR INJURY METHOD IN DIFFERENT STRENGTH SPORTS DAMAGE. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127082021_0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Introduction: Sports muscle injury is a common phenomenon in sports, and most of it is caused by intense exercise done for a long time. Objective: The effect of high intensity mode (HI) speed endurance training on the muscle injury of athletes. Methods: 14 sprinters were recruited; the muscle injury indexes of the subjects were tested 15 min before and 24 h, 48 h and 72 h after speed endurance training in HV mode and HI mode (high volume mode and high intensity mode, respectively). Results: The results of this study showed that both high amount and HI mode speed endurance training caused a certain degree of injury to the subjects’ muscles, but the injury caused by HI mode speed endurance training to the muscles was more serious than that caused by high amount (P < 0.05). Conclusions: HI mode speed endurance training causes a certain degree of injury to the subjects’ muscle, but it causes more serious injury than high volume mode speed endurance training. Level of evidence II; Therapeutic studies - investigation of treatment results.
Collapse
|
6
|
Jasinovic T, Burma JS, Cameron B, Lun V, van Rassel CR, Sutter B, Wiley JP, Schneider KJ. The effect of high-intensity physical exertion on measures of cervical spine, vestibular/ocular-motor screening, and vestibulo-ocular reflex function in university level collision and combative sport athletes. Phys Ther Sport 2021; 51:36-44. [PMID: 34225057 DOI: 10.1016/j.ptsp.2021.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To examine how high-intensity physical exertion affects clinical measures of cervical spine (CSp), vestibular/ocular motor screen (VOMS), and vestibulo-ocular reflex (VOR) function. DESIGN Case series. SETTING Sports Medicine Centre. PARTICIPANTS A total of 37 athletes consented to participate (22 rugby, 15 wrestling; 9 men, 28 women; median age = 19 years [range 17-23 years]). MAIN OUTCOME MEASURES Outcome measures included tests of CSp (cervical flexor endurance, head perturbation test, cervical flexion rotation test and anterolateral strength), VOR (head thrust test and dynamic visual acuity [DVA]), and a quantified version of the VOMS. These metrics were assessed prior to and after completing the 30-15 Intermittent Fitness Test. Bland-Altman plots and Wilcoxon signed-rank tests were utilized to analyze the data using an alpha of p < 0.004. RESULTS Cervical anterolateral strength (kg) was reduced post-exertion on the left (z = 3.87; p < 0.001), but not on the right between conditions (z = -1.49; p = 0.14). Athletes reported increased dizziness (z = -3.55; p = 0.004) and had reduced DVA following exertion (z = -2.78; p < 0.001). All other metrics were not significantly different following exertion (p > 0.011). CONCLUSION Reduced performance on DVA, decreased left-anterolateral strength, and increased dizziness occurred following high-intensity exertion in varsity collision and combative athletes, which has implications for sideline screening for sport-related concussion.
Collapse
Affiliation(s)
- Tin Jasinovic
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joel S Burma
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ben Cameron
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; University of Calgary Sport Medicine Center, Faculty of Kinesiology, Calgary, AB, Canada
| | - Victor Lun
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; University of Calgary Sport Medicine Center, Faculty of Kinesiology, Calgary, AB, Canada
| | - Cody R van Rassel
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Bonnie Sutter
- University of Calgary Sport Medicine Center, Faculty of Kinesiology, Calgary, AB, Canada
| | - J Preston Wiley
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; University of Calgary Sport Medicine Center, Faculty of Kinesiology, Calgary, AB, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; University of Calgary Sport Medicine Center, Faculty of Kinesiology, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, AB, Canada.
| |
Collapse
|
7
|
Burma JS, Miutz LN, Newel KT, Labrecque L, Drapeau A, Brassard P, Copeland P, Macaulay A, Smirl JD. What recording duration is required to provide physiologically valid and reliable dynamic cerebral autoregulation transfer functional analysis estimates? Physiol Meas 2021; 42. [PMID: 33761474 DOI: 10.1088/1361-6579/abf1af] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/24/2021] [Indexed: 12/31/2022]
Abstract
Objective. Currently, a recording of 300 s is recommended to obtain accurate dynamic cerebral autoregulation estimates using transfer function analysis (TFA). Therefore, this investigation sought to explore the concurrent validity and the within- and between-day reliability of TFA estimates derived from shorter recording durations from squat-stand maneuvers.Approach. Retrospective analyses were performed on 70 young, recreationally active or endurance-trained participants (17 females; age: 26 ± 5 years, [range: 20-39 years]; body mass index: 24 ± 3 kg m-2). Participants performed 300 s of squat-stands at frequencies of 0.05 and 0.10 Hz, where shorter recordings of 60, 120, 180, and 240 s were extracted. Continuous transcranial Doppler ultrasound recordings were taken within the middle and posterior cerebral arteries. Coherence, phase, gain, and normalized gain metrics were derived. Bland-Altman plots with 95% limits of agreement (LOA), repeated measures ANOVA's, two-tailed paired t-tests, coefficient of variation, Cronbach's alpha, intraclass correlation coefficients, and linear regressions were conducted.Main results. When examining the concurrent validity across different recording durations, group differences were noted within coherence (F(4155) > 11.6,p < 0.001) but not phase (F(4155) < 0.27,p > 0.611), gain (F(4155) < 0.61,p > 0.440), or normalized gain (F(4155) < 0.85,p > 0.359) parameters. The Bland-Altman 95% LOA measuring the concurrent validity, trended to narrow as recording duration increased (60 s: < ±0.4, 120 s: < ±0.3, 180 s < ±0.3, 240 s: < ±0.1). The validity of the 180 and 240 s recordings further increased when physiological covariates were included within regression models.Significance. Future studies examining autoregulation should seek to have participants perform 300 s of squat-stand maneuvers. However, valid and reliable TFA estimates can be drawn from 240 s or 180 s recordings if physiological covariates are controlled.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Kailey T Newel
- Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Paige Copeland
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Alannah Macaulay
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
8
|
Burma JS, Graver S, Miutz LN, Macaulay A, Copeland PV, Smirl JD. The validity and reliability of ultra-short-term heart rate variability parameters and the influence of physiological covariates. J Appl Physiol (1985) 2021; 130:1848-1867. [PMID: 33856258 DOI: 10.1152/japplphysiol.00955.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ultra-short-term (UST) heart rate variability (HRV) metrics have increasingly been proposed as surrogates for short-term HRV metrics. However, the concurrent validity, within-day reliability, and between-day reliability of UST HRV have yet to be comprehensively documented. Thirty-six adults (18 males, age: 26 ± 5 yr, BMI: 24 ± 3 kg/m2) were recruited. Measures of HRV were quantified in a quiet-stance upright orthostatic position via three-lead electrocardiogram (ADInstruments, FE232 BioAmp). All short-term data recordings were 300 s in length and five UST time points (i.e., 30 s, 60 s, 120 s, 180 s, and 240 s) were extracted from the original 300-s recording. Bland-Altman plots with 95% limits of agreement, repeated measures ANOVA and two-tailed paired t tests demarcated differences between UST and short-term recordings. Linear regressions, coefficient of variation, intraclass correlation coefficients, and other tests examined the validity and reliability in both time- and frequency domains. No group differences were noted between all short-term and UST measures, for either time- (all P > 0.202) or frequency-domain metrics (all P > 0.086). A longer recording duration was associated with augmented validity and reliability, which was less impacted by confounding influences from physiological variables (e.g., respiration rate, carbon dioxide end-tidals, and blood pressure). Conclusively, heart rate, time-domain, and relative frequency-domain HRV metrics were acceptable with recordings greater or equal to 60 s, 240 s, and 300 s, respectively. Future studies employing UST HRV metrics should thoroughly understand the methodological requirements to obtain accurate results. Moreover, a conservative approach should be utilized regarding the minimum acceptable recording duration, which ensures valid/reliable HRV estimates are obtained.NEW & NOTEWORTHY A one size fits all methodological approach to quantify HRV metrics appears to be inappropriate, where study design considerations need to be conducted upon a variable-by-variable basis. The present results found 60 s (heart rate), 240 s (time-domain parameters), and 300 s (relative frequency-domain parameters) were required to obtain accurate and reproducible metrics. The lower validity/reliability of the ultra-short-term metrics was attributable to measurement error and/or confounding from extraneous physiological influences (i.e., respiratory and hemodynamic variables).
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Sarah Graver
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Alannah Macaulay
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Paige V Copeland
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|