1
|
Amna T, Shamshi Hassan M, Algethami JS, Aljuaid A, Alfarsi A, Alnefaie R, Sheikh FA, Khil MS. Characterization of Gold-Enhanced Titania: Boosting Cell Proliferation and Combating Bacterial Infestation. Tissue Eng Regen Med 2024; 21:711-721. [PMID: 38520636 PMCID: PMC11187044 DOI: 10.1007/s13770-024-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND In this study an approach was made to efficaciously synthesize gold enhanced titania nanorods by electrospinning. This study aims to address effects of gold enhanced titania nanorods on muscle precursor cells. Additionally, implant related microbial infections are prime cause of various disastrous diseases. So, there is predictable demand for synthesis of novel materials with multifunctional adaptability. METHODS Herein, gold nanoparticles were attached on titania nanorods and described using many sophisticated procedures such as XRD, SEM, EDX and TEM. Antimicrobial studies were probed against Gram-negative Escherichia coli. C2C12 cell lines were exposed to various doses of as-prepared gold enhanced titania nanorods in order to test in vitro cytotoxicity and proliferation. Cell sustainability was assessed through Cell Counting Kit-8 assay at regular intervals. A phase-contrast microscope was used to examine morphology of exposed C2C12 cells and confocal laser scanning microscope was used to quantify cell viability. RESULTS The findings indicate that titania nanorods enhanced with gold exhibit superior antimicrobial efficacy compared to pure titania. Furthermore, newly synthesized gold-enhanced titania nanorods illustrate that cell viability follows a time and concentration dependent pattern. CONCLUSION Consequently, our study provides optimistic findings indicating that titania nanorods adorned with gold hold significant potential as foundational resource for developing forthcoming antimicrobial materials, suitable for applications both in medical and biomedical fields. This work also demonstrates that in addition to being extremely biocompatible, titania nanorods with gold embellishments may be used in a range of tissue engineering applications in very near future.
Collapse
Affiliation(s)
- Touseef Amna
- Department of Biology, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia.
| | - M Shamshi Hassan
- Department of Chemistry, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia.
| | - Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box 1988, 11001, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, 11001, Najran, Saudi Arabia
| | - Alya Aljuaid
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Anas Alfarsi
- Department of Chemistry, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia
| | - Rasha Alnefaie
- Department of Biology, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Myung-Seob Khil
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
2
|
Taghe S, Mirzaeei S, Hosseinkhani T. Design and development of dual drug-loaded nanofibrous inserts for ophthalmic sustained delivery of AMK and VAN: Pharmacokinetic study in rabbit's eye. Int J Pharm 2024; 656:124056. [PMID: 38548072 DOI: 10.1016/j.ijpharm.2024.124056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Bacterial corneal keratitis is a damage to the corneal tissue that if not treated, can cause various complications like severe vision loss or even blindness. Combination therapy with two antibiotics which are effective against Gram-positive and Gram-negative bacteria offers sufficient broad-spectrum antibiotic coverage for the treatment of keratitis. Nanofibers can be a potential carrier in dual drug delivery due to their structural characteristics, specific surface area and high porosity. In order to achieve a sustained delivery of amikacin (AMK) and vancomycin (VAN), the current study designed, assessed, and compared nanofibrous inserts utilizing polyvinyl alcohol (PVA) and polycaprolactone (PCL) as biocompatible polymers. Electrospinning method was utilized to prepare two different formulations, PVA-VAN/AMK and PCL/PVA-VAN/AMK, with 351.8 ± 53.59 nm and 383.85 ± 49 nm diameters, respectively. The nanofibers were simply inserted in the cul-de-sac as a noninvasive approach for in vivo studies. The data obtained from the physicochemical and mechanical properties studies confirmed the suitability of the formulations. Antimicrobial investigations showed the antibacterial properties of synthesized nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa. Both in vitro and animal studies demonstrated sustained drug release of the prepared nanofibers for 120 h. Based on the in vivo findings, the prepared nanofibers' AUC0-120 was found to be 20 to 31 times greater than the VAN and AMK solutions. Considering the results, the nanofibrous inserts can be utilized as an effective and safe system in drug delivery.
Collapse
Affiliation(s)
- Shiva Taghe
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Rahesh Daru Novine, Kermanshah 6715847141, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Rahesh Daru Novine, Kermanshah 6715847141, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Tanin Hosseinkhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Yan Y, Ji Q, Fu R, Liu C, Yang J, Yin X, Li Q, Huang R. Biomaterials and tissue engineering strategies for posterior lamellar eyelid reconstruction: Replacement or regeneration? Bioeng Transl Med 2023. [DOI: 10.1002/btm2.10497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Yuxin Yan
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qiumei Ji
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Rao Fu
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chuanqi Liu
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jing Yang
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiya Yin
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Department of Plastic and Burn Surgery West China Hospital, Sichuan University Chengdu China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ru‐Lin Huang
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
4
|
Krivolapova DA, Andreev AY, Osidak EO, Budnikova EA. [Methods of surgical reconstruction of the conjunctiva]. Vestn Oftalmol 2023; 139:136-143. [PMID: 38235640 DOI: 10.17116/oftalma2023139061136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Reconstruction of the conjunctiva is required for restoration of damaged ocular surface and is an essential part of that process. Traumas, chemical and thermal burns, multiple surgical intervention can seriously damage the integrity of conjunctival tissue and promote the growth of fibrous tissue, scarring of contractures and their shortening, as well as other complications such as trichiasis, erosion and ulcers on the cornea. When a larger area is affected, there may not be enough donor tissue to replace the defect, in which case the tissue grafts are required to be large enough. Modern modifications of surgical techniques and the continued development of tissue engineering, as well as advancements in stem cell research offer promising novel alternatives for solution of those problems. This article reviews the existing surgical methods of conjunctival reconstruction.
Collapse
Affiliation(s)
| | - A Yu Andreev
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - E O Osidak
- Dmitry Rogachev National Medical Research Center Of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - E A Budnikova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
5
|
Spaniol K, Borrelli M, Menzel-Severing J, Geerling G. [Conjunctival reconstruction-State of the art of regenerative treatment forms beyond the limbus]. DIE OPHTHALMOLOGIE 2022; 119:902-909. [PMID: 35925338 DOI: 10.1007/s00347-022-01673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The demands on conjunctival replacement tissues are high: they need to be elastic, clinically compatible, surgically feasible and support goblet cell growth. OBJECTIVE This article provides an overview of currently applied conjunctival replacement tissues and those under investigation. METHOD Current publications on clinically applied conjunctival replacement tissues and substrates which are the subject of scientific research and those already tested in animal models are presented and discussed. RESULTS Replacement tissues in clinical use are autologous and allogenic conjunctiva, nasal and oral mucous membranes, amniotic membrane and decellularized tissues. Autologous conjunctiva shows good results but is not suitable for large defects due to limited availability. In these cases autologous nasal and oral mucous membranes can be used; however, success is limited in cases of autoimmune diseases. Amniotic membranes are frequently applied clinically but goblet cell growth is limited. Different decellularized tissues are used clinically and goblet cell growth was found in vivo. Robust comparative studies are not yet available. Biological matrices such as fibrin, collagen, elastin, gelatin or hyaluronate and synthetic tissues from the group of polyesters are being investigated in the laboratory and in animal models. These studies show good epithelialization and goblet cell growth in vivo. CONCLUSION Transplantation of conjunctiva, nasal and oral mucous membranes and amniotic membranes show satisfactory clinical results but exhibit individual weaknesses. Further studies in animal models and clinical settings are required to further evaluate the benefits of other matrices, such as cell-free tissues or other biological and synthetic matrices.
Collapse
Affiliation(s)
- Kristina Spaniol
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - Maria Borrelli
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - Johannes Menzel-Severing
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - Gerd Geerling
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| |
Collapse
|
6
|
Anti-Inflammatory Fibronectin-AgNP for Regulation of Biological Performance and Endothelial Differentiation Ability of Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22179262. [PMID: 34502171 PMCID: PMC8430779 DOI: 10.3390/ijms22179262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/21/2023] Open
Abstract
The engineering of vascular regeneration still involves barriers that need to be conquered. In the current study, a novel nanocomposite comprising of fibronectin (denoted as FN) and a small amount of silver nanoparticles (AgNP, ~15.1, ~30.2 or ~75.5 ppm) was developed and its biological function and biocompatibility in Wharton's jelly-derived mesenchymal stem cells (MSCs) and rat models was investigated. The surface morphology as well as chemical composition for pure FN and the FN-AgNP nanocomposites incorporating various amounts of AgNP were firstly characterized by atomic force microscopy (AFM), UV-Visible spectroscopy (UV-Vis), and Fourier-transform infrared spectroscopy (FTIR). Among the nanocomposites, FN-AgNP with 30.2 ppm silver nanoparticles demonstrated the best biocompatibility as assessed through intracellular ROS production, proliferation of MSCs, and monocytes activation. The expression levels of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, were also examined. FN-AgNP 30.2 ppm significantly inhibited pro-inflammatory cytokine expression compared to other materials, indicating superior performance of anti-immune response. Mechanistically, FN-AgNP 30.2 ppm significantly induced greater expression of vascular endothelial growth factor (VEGF) and stromal-cell derived factor-1 alpha (SDF-1α) and promoted the migration of MSCs through matrix metalloproteinase (MMP) signaling pathway. Besides, in vitro and in vivo studies indicated that FN-AgNP 30.2 ppm stimulated greater protein expressions of CD31 and von Willebrand Factor (vWF) as well as facilitated better endothelialization capacity than other materials. Furthermore, the histological tissue examination revealed the lowest capsule formation and collagen deposition in rat subcutaneous implantation of FN-AgNP 30.2 ppm. In conclusion, FN-AgNP nanocomposites may facilitate the migration and proliferation of MSCs, induce endothelial cell differentiation, and attenuate immune response. These finding also suggests that FN-AgNP may be a potential anti-inflammatory surface modification strategy for vascular biomaterials.
Collapse
|
7
|
Makuloluwa AK, Hamill KJ, Rauz S, Bosworth L, Haneef A, Romano V, Williams RL, Dartt DA, Kaye SB. Biological tissues and components, and synthetic substrates for conjunctival cell transplantation. Ocul Surf 2021; 22:15-26. [PMID: 34119712 DOI: 10.1016/j.jtos.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/05/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022]
Abstract
The conjunctiva is the largest component of the ocular surface. It can be damaged by various pathological processes leading to scarring, loss of tissue and dysfunction. Depending on the amount of damage, restoration of function may require a conjunctival graft. Numerous studies have investigated biological and synthetic substrates in the search for optimal conditions for the ex vivo culture of conjunctival epithelial cells that can be used as tissue grafts for transplantation. These substrates have advantages and disadvantages that are specific to the characteristics of each material; the development of an improved material remains a priority. This review is the second of a two-part review in The Ocular Surface. In the first review, the structure and function of the conjunctiva was evaluated with a focus on the extracellular matrix and the basement membrane, and biological and mechanical characteristics of the ideal substrate with recommendations for further studies. In this review the types of biological and synthetic substrates used for conjunctival transplantation are discussed including substrates based on the extracellular matrix. .
Collapse
Affiliation(s)
- Aruni K Makuloluwa
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Kevin J Hamill
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham and Birmingham and Midland Eye Centre, Dudley Road, Birmingham, B18 7QU, UK
| | - Lucy Bosworth
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Atikah Haneef
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Vito Romano
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Darlene A Dartt
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA, 02114, USA
| | - Stephen B Kaye
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
8
|
Germi KG, Shabani F, Khodayari A, Azizian-Kalandaragh Y. Structural and Biological Properties of CuO Nanoparticles Prepared Under Ultrasonic Irradiation. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/15533174.2013.801853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Fahmideh Shabani
- Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Ali Khodayari
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | |
Collapse
|
9
|
Amna T, Shamshi Hassan M, Khil MS, Lee HK, Hwang IH. Electrospun nanofibers of ZnO-TiO2
hybrid: characterization and potential as an extracellular scaffold for supporting myoblasts. SURF INTERFACE ANAL 2013. [DOI: 10.1002/sia.5350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Touseef Amna
- Department of Animal Sciences and Biotechnology; Chonbuk National University; Jeonju 561-756 Korea
| | - M. Shamshi Hassan
- Department of Organic Materials and Fiber Engineering; Chonbuk National University; Jeonju 561-756 Korea
| | - Myung-Seob Khil
- Department of Organic Materials and Fiber Engineering; Chonbuk National University; Jeonju 561-756 Korea
| | - Hak-Kyo Lee
- Genomic Informatics Center; Hankyong National University; Anseong South Korea
| | - I. H. Hwang
- Department of Animal Sciences and Biotechnology; Chonbuk National University; Jeonju 561-756 Korea
| |
Collapse
|
10
|
Shamshi Hassan M, Amna T, Hwang I, Khil MS. One-step facile construction of high aspect ratio Fe3O4 decorated CNFs with distinctive porous morphology: Potential multiuse expectations. Colloids Surf B Biointerfaces 2013; 106:170-5. [DOI: 10.1016/j.colsurfb.2013.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
11
|
Amna T, Hassan MS, Van Ba H, Khil MS, Lee HK, Hwang I. Electrospun Fe3O4/TiO2 hybrid nanofibers and their in vitro biocompatibility: Prospective matrix for satellite cell adhesion and cultivation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:707-13. [DOI: 10.1016/j.msec.2012.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/28/2012] [Accepted: 10/28/2012] [Indexed: 11/16/2022]
|
12
|
TiO2 nanorods via one-step electrospinning technique: a novel nanomatrix for mouse myoblasts adhesion and propagation. Colloids Surf B Biointerfaces 2012; 101:424-9. [PMID: 23010050 DOI: 10.1016/j.colsurfb.2012.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/14/2012] [Accepted: 06/16/2012] [Indexed: 11/22/2022]
Abstract
This study was aimed at the synthesis and characterization of novel Titania nanorods by sol-gel electrospinning technique. The physicochemical properties of the synthesized nanorods were determined by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD) pattern. To examine the in vitro cytotoxicity, mouse myoblast C2C12 cells were treated with different concentrations of as prepared TiO(2) nanorods and the viability of cells was analyzed by Cell Counting Kit-8 assay at regular time intervals. The morphological features of the cells attached with nanorods were examined by Bio-SEM. Cytotoxicity experiments indicated that the mouse myoblast cells could attach to the TiO(2) nanorods after being cultured. We observed that TiO(2) nanorods could support cell adhesion and growth and guide spreading behavior of myoblasts. We conclude that the electrospun TiO(2) nanorods scaffolds with unique morphology had excellent biocompatibility. Thus, the current work demonstrates that the as-synthesized TiO(2) nanorods represent a promising biomaterial to be exploited for various tissue engineering applications.
Collapse
|
13
|
Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 2009; 31:216-25. [PMID: 19781769 DOI: 10.1016/j.biomaterials.2009.09.034] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/10/2009] [Indexed: 01/22/2023]
Abstract
In the past 20 years, human amniotic membrane (AM) has become widely used as an ophthalmic surgical patch as well as a substrate for stem cell tissue equivalents for ocular surface reconstruction. AM reduces ocular surface scarring and inflammation, and enhances epithelialization. In addition, it shows limited immunogenicity and some anti-microbial properties. Before being applied clinically, the donor of AM is required to undergo a thorough health screening and the membrane has to undergo an accepted processing routine, which includes preservation, sterilization and de-epithelialization. There have been various articles describing methods in preserving, sterilizing and de-epithelializing AM. Each preparation technique has been reported to have differential effects on the physical and biological properties of the AM. Therefore, it is difficult to establish a standardized procedure. In this review, we discuss the present techniques and several novel, new approaches in the preparation of AM for use in ocular surface reconstruction, and their impact on AM structure and biological activity.
Collapse
|
14
|
Park CJ, Gabrielson NP, Pack DW, Jamison RD, Wagoner Johnson AJ. The effect of chitosan on the migration of neutrophil-like HL60 cells, mediated by IL-8. Biomaterials 2009; 30:436-44. [DOI: 10.1016/j.biomaterials.2008.09.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 09/23/2008] [Indexed: 11/16/2022]
|