1
|
Dong L, Zhang H, Zhang G, Li F, Li M, Wang H, Ye X, Ren X, Zhang J, Peng C, Liu H, Wu L. Polystyrene Sulfonate Resin as an Ophthalmic Carrier for Enhanced Bioavailability of Ligustrazine Phosphate Controlled Release System. J Pharm Sci 2024; 113:2786-2794. [PMID: 38986870 DOI: 10.1016/j.xphs.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Topical ocular sustained-release drug delivery systems represent an effective strategy for the treatment of ocular diseases, for which a suitable carrier has yet to be sufficiently developed. Herein, an eye-compatible sodium polystyrene sulfonate resin (SPSR) was synthesized with a uniform particle size of about 3 μm. Ligustrazine phosphate (LP) was adsorbed to SPSR by cation exchange to form LP@SPSR. LP@SPSR suspension eye drops were further developed using the combination of Carbopol 934P and xanthan gum as suspending agents. The LP@SPSR suspension showed a sustained release in vitro, which was consistent with the observed porcine corneal penetration ex vivo. Pharmacokinetics in tear fluid of rabits indicated that LP@SPSR suspension led to prolonged ocular retention of LP and a 2-fold improved the area under the drug concentration-time curve (AUC0-t). Pharmacokinetics in the aqueous humor of rabbits showed 2.8-fold enhancement in the AUC0-t compared to LP solution. The LP@SPSR suspension exhibited no cytotoxicity to human corneal epithelial cells, nor irritation was observed in rabbit eyes. Thus, the LP@SPSR suspension has been validated as a safe and sustained release system leading to enhanced ophthalmic bioavailability for treating ocular diseases.
Collapse
Affiliation(s)
- Liyun Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Hui Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Guoqing Zhang
- Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Falan Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Mingwei Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Huihui Wang
- Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Xinyue Ye
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Xiaohong Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiwen Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Can Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongfei Liu
- Jiangsu University, Zhenjiang 212000, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China.
| | - Li Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China.
| |
Collapse
|
2
|
Li QW, Zhang GL, Hao CX, Ma YF, Sun X, Zhang Y, Cao KX, Li BX, Yang GW, Wang XM. SANT, a novel Chinese herbal monomer combination, decreasing tumor growth and angiogenesis via modulating autophagy in heparanase overexpressed triple-negative breast cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113430. [PMID: 33011366 DOI: 10.1016/j.jep.2020.113430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus mongholicus, Solanum nigrum Linn, Lotus plumule, Ligusticum are widely used traditional herbal medicines for cancer treatment in China. They were typical drugs selected from Gubenyiliu II and series of formula (GYII), which were developed on the foundation of YIQIHUOXUEJIEDU theory. In the present study, four active ingredients (Astragaloside IV, α-solanine, neferine, and 2,3,5,6-tetramethylpyrazine) derived from medicines above were applied in combination as SANT. AIM OF THE STUDY Triple-negative breast cancer (TNBC) is a serious threat to women's health worldwide. Heparanase (HPSE) is often up-regulated in breast cancer with the properties of facilitating tumorigenesis and influencing the autophagy process in cancer cells. This study aimed at evaluating the anti-tumor potential of SANT in treating HPSE related TNBC both in-vitro and in-vivo. MATERIALS AND METHODS In this study, we explored the correlation between HPSE expression and survival of breast cancer patients in databases. We performed MTS, trans-well and wound scratch assays to assess the impact of SANT on cell proliferation and migration. Confocal microscopy observation and western blots were applied to verify the autophagy flux induced by SANT. Mice models were employed to evaluate the efficacy and safety of SANT in-vivo by tumor weights and volumes or serum index, respectively. To analyze the underlying mechanisms of SANT, we conducted human autophagy PCR array and angiogenesis proteome profiler on tumor tissues. RESULTS Patients with elevated HPSE expression were associated with a poor outcome in both RFS (P = 1.7e-12) and OS (P = 0.00016). SANT administration significantly inhibited cancer cells' proliferation and migration, enhanced autophagy flux, and slightly reduced the active form of HPSE in-vitro. SANT also suppressed tumor growth and angiogenesis in-vivo. Human autophagy PCR array results indicated that SANT increased the ATG16L1, ATG9B, ATG4D gene expressions while decreased TMEM74 and TNF gene expressions.Angiogenesis proteome profiler results showed SANT reduced protein level of HB-EGF, thrombospondin-2, amphiregulin, leptin, IGFBP-9, EGF, coagulation factor III, and MMP-9 (pro and active form) in tumor, raised the protein expression of serpin E1 and platelet factor 4. CONCLUSIONS These findings indicated that herbal compounds SANT may be a promising candidate in anti-cancer drug discovery. It also provides novel strategies for using natural compounds to achieve optimized effect.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/pharmacology
- Autophagy/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Glucuronidase/genetics
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Qi-Wei Li
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Gan-Lin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| | - Cai-Xia Hao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Yun-Fei Ma
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xu Sun
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou Henan 450008, China
| | - Yi Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Ke-Xin Cao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Bing-Xue Li
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Guo-Wang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xiao-Min Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
3
|
Yang C, Xu Y, Zhou H, Yang L, Yu S, Gao Y, Huang Y, Lu L, Liang X. Tetramethylpyrazine protects CoCl2-induced apoptosis in human umbilical vein endothelial cells by regulating the PHD2/HIF/1α-VEGF pathway. Mol Med Rep 2015; 13:1287-96. [PMID: 26676934 DOI: 10.3892/mmr.2015.4679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 11/17/2015] [Indexed: 11/06/2022] Open
Abstract
Tetramethylpyrazine (TMP), one of the active ingredients isolated from a Chinese herbal prescription, possesses protective effects against apoptosis in endothelial cells. However, the underlying mechanism of its protective effects in endothelial cells remains to be elucidated. Using human umbilical vein endothelial cells (HUVECs), the present study assessed the protective effects of TMP on CoCl2-induced apoptosis. Following pre-incubation with CoCl2 (150 µM/ml) for 4 h, the HUVECs were treated with TMP at different concentrations (50, 100 and 200 µM/ml) for 8 h. TMP upregulated the expression of prolyl hydroxylase (PHD)2, reduced the protein and mRNA expression levels of vascular endothelial growth factor (VEGF), and reduced the expression of HIF-1α only at the protein level, not at the mRNA level in HUVECs, in a concentration-dependent manner. Furthermore, silencing of the PHD2 gene with small interfering (si)RNAs abolished the reduction in the expression of hypoxia-inducible factor (HIF)-1α and VEGF by TMP. In addition, TMP protected CoCl2-induced HUVEC injury via an apoptosis pathway, as characterized by the increased ratio of cell viability and the reduced percentage of apoptotic and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive HUVECs, activation of caspase-3, -8 and -9, B-cell lymphoma (Bcl)-2/Bcl-2-activated X protein expression, as well as the release of cytochrome c. The protective properties of TMP were partially attributed to the mRNA and protein expression levels of PHD, since silencing of the PHD2 gene with siRNAs abolished these effects. The present study demonstrated that the antiapoptotic effect of TMP in CoCl2-induced HUVECs was, at least in part, via the regulation of the PHD2/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Huanjiao Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Lu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yi Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yongsheng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
4
|
Liang X, Zhou H, Ding Y, Li J, Yang C, Luo Y, Li S, Sun G, Liao X, Min W. TMP prevents retinal neovascularization and imparts neuroprotection in an oxygen-induced retinopathy model. Invest Ophthalmol Vis Sci 2012; 53:2157-69. [PMID: 22410554 DOI: 10.1167/iovs.11-9315] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To evaluate the effects of tetramethylpyrazine (TMP) on retinal neovascularization (NV) and neuroprotection in an oxygen-induced retinopathy (OIR) model. METHODS Neonatal C57BL/6J mice were subjected to 75% oxygen from postnatal day 7 (P7) to P12 and then returned to room air. TMP (200 mg/kg) or normal saline was given daily from P12 to P17. Immunostaining, HE staining, TUNEL assay, and RT-PCR were used to assess the effects of TMP on retinal neurovascular repair. RESULTS TMP effectively prevented pathologic NV and accelerated physiologic revascularization by enhancing the formation of endothelial tip cells at the edges of the repairing capillary networks and preserving the astrocytic template in the avascular retina. TMP also prevented morphologic changes and significantly decreased TUNEL-positive cells in the avascular retina by rescuing neurons such as amacrine, rod bipolar, horizontal, and Müller cells. In TMP-treated mice retinas, there was a less obvious loss of amacrine cell bodies and their distinct bands; the number of both rod bipolar and horizontal cell bodies, as well as the density of their dendrites in the outer plexiform layer, was greater than that in OIR control mice. TMP not only decreased the loss of alignment of Müller cell bodies and distortion of processes but reduced the reactive expression of GFAP in Müller cells. Furthermore, HIF-1α and VEGF mRNA expression were downregulated in TMP-treated mice retinas. CONCLUSIONS TMP improved neurovascular recovery by preventing NV and protecting retinal astroglia cells and neurons from ischemia-induced cell death partially due to its downregulation of HIF-1α and VEGF mRNA expression.
Collapse
Affiliation(s)
- Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chiou GC. Pharmacological treatment of dry age-related macular degeneration (AMD). Taiwan J Ophthalmol 2011. [DOI: 10.1016/j.tjo.2011.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
6
|
Shen Y, Zhuang P, Lin BQ, Zhang WY, Cy Chiou G. Effect of Tetramethylpyrazine on RPE degeneration, choroidal blood flow and oxidative stress of RPE cells. Int J Ophthalmol 2010; 3:205-10. [PMID: 22553555 DOI: 10.3980/j.issn.2222-3959.2010.03.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/20/2010] [Indexed: 11/02/2022] Open
Abstract
AIM To study the effects of Tetramethylpyrazine (TMP) on retinal pigment epithelium (RPE) degeneration, choroidal blood flow and oxidative stress of RPE cells. METHODS The 35mg/kg NaIO(3)-induced RPE degeneration rat eyes was given 25µg 1% TMP eye drops 3 times a day for 7 days before NaIO(3) injection, and then 2 to 4 weeks after NaIO(3) injection. RPE function was measured with c-wave of electroretinogram (ERG). Colored microsphere technique was used for in vivo experiments to determine the choroidal blood flow in ocular hypertensive (40mmHg) rabbit eyes. Methylthiazoltetrazolium (MTT) assay was used to study in vitro effect of TMP on various oxidants induced injury in the hRPE (ARPE-19 (ATCC, Manassas, VA, USA)). RESULTS Two weeks after NaIO(3) injection, the amplitude of ERG c-wave fell markedly in NaIO(3) group to 36% of control group(P<0.01). No apparent difference was observed in TMP+NaIO(3) group. Four weeks later, the NaIO(3) group fell to 46% of control group (P<0.01), while the TMP+NaIO(3) group fell to only 77% of control group (P<0.01). There was a 67% reversal of the ERG c-wave by TMP as compared to NaIO(3) group(P<0.01). The choroidal blood flow was significantly increased at all time points (at 30, 60 and 120 minutes after TMP instillation) as compared with corresponding controls. TMP had no effect on hypoxia-(1% O(2)), t-BHP- and H(2)O(2)-induced damage in RPE cells. 10(g/mL TMP could reverse 1 and 3mM NaN(3)-induced loss of viability of RPE by 18.5% (P<0.01) and 23% (P<0.01), respectively. 30µg/mL TMP could reverse 30 and 100mM NaIO(3) induced loss of viability of RPE by 18.1% (P<0.05) and 16.8% (P<0.01), respectively. CONCLUSION TMP can significantly protect RPE from NaIO(3) induced degeneration in vivo and oxidative stress in vitro and can increase choroidal blood flow markedly in vivo.
Collapse
Affiliation(s)
- Yi Shen
- Institute of Ocular Pharmacology, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
7
|
Sun Y, Jiang J, Zhang Z, Yu P, Wang L, Xu C, Liu W, Wang Y. Antioxidative and thrombolytic TMP nitrone for treatment of ischemic stroke. Bioorg Med Chem 2008; 16:8868-74. [DOI: 10.1016/j.bmc.2008.08.075] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
|