1
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Wu HJ, Li XY, Qian WJ, Li Q, Wang SY, Ji M, Ma YY, Gao F, Sun XH, Wang X, Miao Y, Yang XL, Wang Z. Dopamine D1 receptor-mediated upregulation of BKCa
currents modifies Müller cell gliosis in a rat chronic ocular hypertension model. Glia 2018; 66:1507-1519. [PMID: 29508439 DOI: 10.1002/glia.23321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Hang-Jing Wu
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Xue-Yan Li
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Wen-Jing Qian
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Qian Li
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Shu-Yue Wang
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Min Ji
- Department of Ophthalmology at Eye & ENT Hospital; Fudan University; Shanghai 200031 China
| | - Yuan-Yuan Ma
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Feng Gao
- Department of Ophthalmology at Eye & ENT Hospital; Fudan University; Shanghai 200031 China
| | - Xing-Huai Sun
- Department of Ophthalmology at Eye & ENT Hospital; Fudan University; Shanghai 200031 China
| | - Xin Wang
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Yanying Miao
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Xiong-Li Yang
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Zhongfeng Wang
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| |
Collapse
|
3
|
Abstract
Müller glia, the principal macroglia of the retina, express diverse subtypes of adenosine and metabotropic purinergic (P2Y) receptors. Müller cells of several species, including man, also express ionotropic P2X7 receptors. ATP is liberated from Müller cells after activation of metabotropic glutamate receptors and during osmotic and mechanical induction of membrane stretch; adenosine is released through equilibrative nucleoside transporters. Müller cell-derived purines modulate the neuronal activity and have autocrine effects, for example, induction of glial calcium waves and regulation of the cellular volume. Glial calcium waves induced by neuron-derived ATP mediate functional hyperemia in the retina. Purinergic signaling contributes to the induction of Müller cell gliosis, for example, of cellular proliferation and downregulation of potassium channels, which are important for the homeostatic functions of Müller cells. Purinergic glial calcium waves may also promote the long-range propagation of gliosis and neuronal degeneration across the retinal tissue. The osmotic ATP release is inhibited under pathological conditions. Inhibition of the ATP release may result in osmotic Müller cell swelling and dysregulation of the water transport through the cells; both may contribute to the development of retinal edema. Suppression of the osmotic ATP release and upregulation of the ecto-apyrase (NTPDase1), which facilitate the extracellular degradation of ATP and the formation of adenosine, may protect neurons and photoreceptors from death due to overactivation of P2X receptors. Pharmacological inhibition of P2X7 receptors and stimulation of adenosine receptors may represent clinical approaches to prevent retinal cell death and dysregulated cell proliferation, and to treat retinal edema.
Collapse
Affiliation(s)
- Andreas Reichenbach
- 1 Paul Flechsig Institute of Brain Research, University of Leipzig , Leipzig, Germany
| | - Andreas Bringmann
- 2 Department of Ophthalmology and Eye Hospital, University of Leipzig , Leipzig, Germany
| |
Collapse
|
4
|
Pannicke T, Ivo Chao T, Reisenhofer M, Francke M, Reichenbach A. Comparative electrophysiology of retinal Müller glial cells-A survey on vertebrate species. Glia 2016; 65:533-568. [PMID: 27767232 DOI: 10.1002/glia.23082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
Abstract
Müller cells are the dominant macroglial cells in the retina of all vertebrates. They fulfill a variety of functions important for retinal physiology, among them spatial buffering of K+ ions and uptake of glutamate and other neurotransmitters. To this end, Müller cells express inwardly rectifying K+ channels and electrogenic glutamate transporters. Moreover, a lot of voltage- and ligand-gated ion channels, aquaporin water channels, and electrogenic transporters are expressed in Müller cells, some of them in a species-specific manner. For example, voltage-dependent Na+ channels are found exclusively in some but not all mammalian species. Whereas a lot of data exist from amphibians and mammals, the results from other vertebrates are sparse. It is the aim of this review to present a survey on Müller cell electrophysiology covering all classes of vertebrates. The focus is on functional studies, mainly performed using the whole-cell patch-clamp technique. However, data about the expression of membrane channels and transporters from immunohistochemistry are also included. Possible functional roles of membrane channels and transporters are discussed. Obviously, electrophysiological properties involved in the main functions of Müller cells developed early in vertebrate evolution. GLIA 2017;65:533-568.
Collapse
Affiliation(s)
- Thomas Pannicke
- Paul-Flechsig-Institut für Hirnforschung, Abteilung Pathophysiologie der Neuroglia, Universität Leipzig, Germany
| | - T Ivo Chao
- Institute of Anatomy and Cell Biology, Medical School Göttingen, Germany
| | - Miriam Reisenhofer
- Department of Chemistry, University of Zürich, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Mike Francke
- Paul-Flechsig-Institut für Hirnforschung, Abteilung Pathophysiologie der Neuroglia, Universität Leipzig, Germany
- Sächsischer Inkubator für klinische Translation (SIKT), Universität Leipzig, Germany
| | - Andreas Reichenbach
- Paul-Flechsig-Institut für Hirnforschung, Abteilung Pathophysiologie der Neuroglia, Universität Leipzig, Germany
| |
Collapse
|
5
|
Reichenbach A, Bringmann A. Purinergic signaling in retinal degeneration and regeneration. Neuropharmacology 2015; 104:194-211. [PMID: 25998275 DOI: 10.1016/j.neuropharm.2015.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 02/01/2023]
Abstract
Purinergic signaling is centrally involved in mediating the degeneration of the injured and diseased retina, the induction of retinal gliosis, and the protection of the retinal tissue from degeneration. Dysregulated calcium signaling triggered by overactivation of P2X7 receptors is a crucial step in the induction of neuronal and microvascular cell death under pathogenic conditions like ischemia-hypoxia, elevated intraocular pressure, and diabetes, respectively. Overactivation of P2X7 plays also a pathogenic role in inherited and age-related photoreceptor cell death and in the age-related dysfunction and degeneration of the retinal pigment epithelium. Gliosis of micro- and macroglial cells, which is induced and/or modulated by purinergic signaling and associated with an impaired homeostatic support to neurons, and the ATP-mediated propagation of retinal gliosis from a focal injury into the surrounding noninjured tissue are involved in inducing secondary cell death in the retina. On the other hand, alterations in the glial metabolism of extracellular nucleotides, resulting in a decreased level of ATP and an increased level of adenosine, may be neuroprotective in the diseased retina. Purinergic signals stimulate the proliferation of retinal glial cells which contributes to glial scarring which has protective effects on retinal degeneration and adverse effects on retinal regeneration. Pharmacological modulation of purinergic receptors, e.g., inhibition of P2X and activation of adenosine receptors, may have clinical importance for the prevention of photoreceptor, neuronal, and microvascular cell death in diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration, and glaucoma, respectively, for the clearance of retinal edema, and the inhibition of dysregulated cell proliferation in proliferative retinopathies. This article is part of a Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
|
7
|
Wurm A, Pannicke T, Iandiev I, Francke M, Hollborn M, Wiedemann P, Reichenbach A, Osborne NN, Bringmann A. Purinergic signaling involved in Müller cell function in the mammalian retina. Prog Retin Eye Res 2011; 30:324-42. [DOI: 10.1016/j.preteyeres.2011.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
8
|
Yu D, Buibas M, Chow SK, Lee IY, Singer Z, Silva GA. Characterization of Calcium-Mediated Intracellular and Intercellular Signaling in the rMC-1 Glial Cell Line. Cell Mol Bioeng 2008; 2:144-155. [PMID: 19890481 DOI: 10.1007/s12195-008-0039-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Retinal Müller glial cells, in addition to providing homeostatic support to retinal neurons, have been shown to engage in modulation of neuronal activity and regulate vasomotor responses in the retina, among other functions. Calcium-mediated signaling in Müller cells has been implicated to play a significant role in the intracellular and intercellular interactions necessary to carry out these functions. Although the basic molecular mechanisms of calcium signaling in Müller cells have been described, the dynamics of calcium responses in Müller cells have not been fully explored. Here, we provide a quantitative characterization of calcium signaling in an in vitro model of Müller cell signaling using the rMC-1 cell line, a well-established line developed from rat Müller cells. rMC-1 cells displayed robust intracellular calcium transients and the capacity to support calcium transient-mediated intercellular calcium waves with signaling dynamics similar to that reported for Müller cells in in situ retinal preparations. Furthermore, pharmacological perturbations of intracellular calcium transients with thapsigargin and intercellular calcium waves with purinergic receptor antagonists and gap junction blockers (PPADS and FFA, respectively) suggest that the molecular mechanisms that underlie calcium signaling in rMC-1 cells has been conserved with those of Müller cells. This model provides a robust in vitro system for investigating specific mechanistic hypotheses of intra- and intercellular calcium signaling in Müller cells.
Collapse
Affiliation(s)
- Diana Yu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|