Liao DY, Liu JH, Zheng YP, Shiu HW, Wang JM, Chao HM. OCT proves that vitreomacular adhesion is significantly more likely to develop vision-threatening retinal complications than vitreomacular separation.
BMC Ophthalmol 2020;
20:163. [PMID:
32321473 PMCID:
PMC7178608 DOI:
10.1186/s12886-020-01416-x]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
Background
SD-OCT is becoming commonplace in everyday practice. Vitreomacular adhesions (VMAs) are being more routinely diagnosed. Predictive studies to the natural course of VMA are thus clinically significant. Spectral domain-optical coherence tomography (SD-OCT) was presently utilized to analyze the incidence of floaters, the complete vitreomacular separation or VMA, the VMA complication, the vitreomacular angle (VMAng), and the complication mechanism.
Methods
Monthly SD-OCT was performed on patients with/without symptomatic floaters. OCT allowed VMA and vitreomacular separation to be compared. The incidence was assessed applying one-tailed Fisher’s exact tests. The VMAngs between the inner retina and posterior hyaloid were measured, and the complication mechanism was studied using OCT image. For macular hole (MH), pre- and/or post-operative best corrected visual acuities (BCVAs; LogMAR), refractions and photoreceptor conditions were also evaluated.
Results
Totally, 124 eyes were included; there were 116 eyes with VMA and 8 eyes with vitreomacular separation. Considering the percentages over 124 eyes, floaters were present in 14.5% of enrolled eyes (=18/124), consisting of 12.9% of eyes with VMA (16/124) and 1.6% of eyes with vitreomacular separation (2/124). Moreover, there were twelve eyes (9.7%) with VMA-associated vision-threatening complications, including MH (n = 8; 6.5%), retinal detachment (RD; n = 2; 1.6%), vitreomacular traction (VMT; n = 1; 0.8%) and macular pucker (MP; n = 1; 0.8%). Eyes with initial VMA had a significantly greater possibility of complications than eyes with initial vitreomacular separation (p = 0.03). Among these eyes with MH (n = 8), the pre-operative BCVA (LogMAR) was 1.1 ± 0.5, which was insignificantly (p = 0.35) improved to 0.8 ± 0.7 post-operatively. The VMAng of VMA eyes with MHs was 24.2 ± 24.9° (n = 8). The critical VMAng was 13.3°.
Conclusions
A minority of eyes with VMA or vitreomacular separation had floaters. Moreover, the use of SD-OCT could identify vision-threatening sequelae, namely MH, RD, MP and VMT, and this was significantly more frequent in eyes with VMA than in eyes with complete vitreomacular separation. Therefore, SD-OCT might be a useful way of identifying either identity, and evaluating VMA-associated complications. Whether VMA eyes with MH (n = 8) that have a VMAng greater than critical VMAng have a greater likelihood of tangential traction and subsequent MH needs further investigation.
Collapse