1
|
Asani B, Siedlecki J, Wertheimer C, Liegl R, Wolf A, Ohlmann A, Priglinger S, Priglinger C. Anti-angiogenic properties of rapamycin on human retinal pericytes in an in vitro model of neovascular AMD via inhibition of the mTOR pathway. BMC Ophthalmol 2022; 22:138. [PMID: 35337287 PMCID: PMC8957126 DOI: 10.1186/s12886-022-02334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Choroidal neovascularizations (CNV) are partially stabilized through a coverage of pericytes leading to a partial anti-VEGF resistence. Drugs licensed for neovascular AMD (nAMD) do not take this mechanical and growth factor-driven CNV stability into account. The purpose of this work was to see if inhibiting the mammalian target of rapamycin (mTOR) may successfully block angiogenic cellular pathways in primary human retinal pericytes in an in vitro model of nAMD. METHODS The mTOR inhibitor rapamycin was used to treat human retinal pericytes (HRP) at doses ranging from 0.005 to 15 g/ml. A modified metabolism-based XTT-Assay was used to assess toxicity and anti-proliferative effects. A scratch wound experiment showed the effects on migration. On Cultrex basement membrane gels, the influence of rapamycin on the development of endothelial cell capillary-like structures by human umbilical vein vascular endothelial cells (HUVEC) in the absence and presence of pericytes was investigated. RESULTS Rapamycin showed no signs of toxicity within its range of solubility. The drug showed dose dependent anti-proliferative activity and inhibited migration into the scratch wound. Endothelial cell tube formation in a HUVEC monoculture was effectively inhibited at 45%. A co-culture of HUVEC with pericytes on Cultrex induced endothelial tube stabilization but was disrupted by the addition of rapamycin leading to degradation of 94% of the tubes. CONCLUSIONS Rapamycin allows for an efficient modulation of aspects of angiogenesis in pericytes via mTOR-modulation in vitro. Further studies are needed to elucidate whether rapamycin may have an impact on CNV in nAMD in vivo.
Collapse
Affiliation(s)
- Ben Asani
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany.
| | - Jakob Siedlecki
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| | | | - Raffael Liegl
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| | - Armin Wolf
- Department of Ophthalmology, University Clinic Ulm, Ulm, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| | - Claudia Priglinger
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| |
Collapse
|
2
|
Eskandarpour M, Nunn MA, Weston-Davies W, Calder VL. Immune-Mediated Retinal Vasculitis in Posterior Uveitis and Experimental Models: The Leukotriene (LT)B4-VEGF Axis. Cells 2021; 10:cells10020396. [PMID: 33671954 PMCID: PMC7919050 DOI: 10.3390/cells10020396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal vascular diseases have distinct, complex and multifactorial pathogeneses yet share several key pathophysiological aspects including inflammation, vascular permeability and neovascularisation. In non-infectious posterior uveitis (NIU), retinal vasculitis involves vessel leakage leading to retinal enlargement, exudation, and macular oedema. Neovascularisation is not a common feature in NIU, however, detection of the major angiogenic factor—vascular endothelial growth factor A (VEGF-A)—in intraocular fluids in animal models of uveitis may be an indication for a role for this cytokine in a highly inflammatory condition. Suppression of VEGF-A by directly targeting the leukotriene B4 (LTB4) receptor (BLT1) pathway indicates a connection between leukotrienes (LTs), which have prominent roles in initiating and propagating inflammatory responses, and VEGF-A in retinal inflammatory diseases. Further research is needed to understand how LTs interact with intraocular cytokines in retinal inflammatory diseases to guide the development of novel therapeutic approaches targeting both inflammatory mediator pathways.
Collapse
Affiliation(s)
- Malihe Eskandarpour
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
- Correspondence:
| | - Miles A. Nunn
- Akari Therapeutics Plc, London EC1V 9EL, UK; (M.A.N.); (W.W.-D.)
| | | | - Virginia L. Calder
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
| |
Collapse
|
3
|
The Inhibitory Effects of Gold Nanoparticles on VEGF-A-Induced Cell Migration in Choroid-Retina Endothelial Cells. Int J Mol Sci 2019; 21:ijms21010109. [PMID: 31877924 PMCID: PMC6982177 DOI: 10.3390/ijms21010109] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Vascular endothelial growth factor (VEGF) is upregulated by hypoxia and is a crucial stimulator for choroidal neovascularization (CNV) in age-related macular degeneration and pathologic myopia, as well as retinal neovascularization in proliferative diabetic retinopathy. Retinal and choroidal endothelial cells play key roles in the development of retinal and CNV, and subsequent fibrosis. At present, the effects of gold nanoparticles (AuNPs) on the VEGF-induced choroid-retina endothelial (RF/6A) cells are still unknown. In our study, we investigated the effects of AuNPs on RF/6A cell viabilities and cell adhesion to fibronectin, a major ECM protein of fibrovascular membrane. Furthermore, the inhibitory effects of AuNPs on RF/6A cell migration induced by VEGF and its signaling were studied. Methods: The cell viability assay was used to determine the viability of cells treated with AuNPs. The migration of RF/6A cells was assessed by the Transwell migration assay. The cell adhesion to fibronectin was examined by an adhesion assay. The VEGF-induced signaling pathways were determined by western blotting. Results: The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay revealed no cytotoxicity of AuNPs on RF/6A cells. AuNPs inhibited VEGF-induced RF/6A cell migration in a concentration-dependent manner but showed no significant effects on RF/6A cell adhesion to fibronectin. Inhibitory effects of AuNPs on VEGF-induced Akt/eNOS were found. Conclusions: These results suggest that AuNPs are an effective inhibitor of VEGF-induced RF/6A cell migration through the Akt/eNOS pathways, but they have no effects on their cell viabilities and cell adhesion to fibronectin.
Collapse
|
4
|
Capasso C, Winum JY. Novel method of treating macular degeneration: a patent evaluation (WO2018/107005). Expert Opin Ther Pat 2019; 29:749-752. [DOI: 10.1080/13543776.2019.1661991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Clemente Capasso
- Istituto di Bioscienze e Biorisorse, National Research Council (CNR), Napoli, Italy
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| |
Collapse
|
5
|
Hayashi H, Mamun AA, Takeyama M, Yamamura A, Zako M, Yagasaki R, Nakahara T, Kamei M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-induced choroidal neovascularization. Sci Rep 2019; 9:1560. [PMID: 30733465 PMCID: PMC6367328 DOI: 10.1038/s41598-018-38067-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/19/2018] [Indexed: 01/30/2023] Open
Abstract
Choroidal neovascularization (CNV) is associated with age-related macular degeneration (AMD), a major cause of vision loss among elderly people. Vascular endothelial cell growth factor (VEGF) is essential for the development and progression of AMD, and VEGF signaling molecules are effective targets for the treatment of AMD. We recently reported that activator of G-protein signaling 8 (AGS8), a receptor-independent Gβγ regulator, is involved in VEGF-induced angiogenesis in cultured endothelial cells (EC); however, the role of AGS8 in CNV is not yet understood. This study aimed to explore the role of AGS8 in CNV in cultured cells, explanted choroid tissue, and laser-induced CNV in a mouse AMD model. AGS8 knockdown in cultured choroidal EC inhibited VEGF-induced VEGFR-2 phosphorylation, cell proliferation, and migration. AGS8 knockdown also downregulated cell sprouting from mouse choroidal tissue in ex vivo culture. A mouse model of laser-induced CNV, created to analyze the roles of AGS8 in vivo, demonstrated that AGS8 mRNA was significantly upregulated in choroidal lesions and AGS8 was specifically expressed in the neovasculature. Local AGS8 knockdown in intravitreal tissue significantly inhibited laser-induced AGS8 upregulation and suppressed CNV, suggesting that AGS8 knockdown in the choroid has therapeutic potential for AMD. Together, these results demonstrate that AGS8 plays critical roles in VEGF-induced CNV.
Collapse
Affiliation(s)
- Hisaki Hayashi
- Department of Physiology, Aichi Medical University, Nagakute, Japan.
| | | | - Masayuki Takeyama
- Department of Ophthalmology, Aichi Medical University, Nagakute, Japan
| | - Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Masahiro Zako
- Department of Ophthalmology, Asai Hospital, Seto, Japan
| | - Rina Yagasaki
- Department of Molecular Pharmacology, Kitasato University School of Pharmacy, Tokyo, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmacy, Tokyo, Japan
| | - Motohiro Kamei
- Department of Ophthalmology, Aichi Medical University, Nagakute, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, Nagakute, Japan.
| |
Collapse
|
6
|
Luo X, Gu S, Zhang Y, Zhang J. Kinsenoside Ameliorates Oxidative Stress-Induced RPE Cell Apoptosis and Inhibits Angiogenesis via Erk/p38/NF-κB/VEGF Signaling. Front Pharmacol 2018; 9:240. [PMID: 29615910 PMCID: PMC5870051 DOI: 10.3389/fphar.2018.00240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/05/2018] [Indexed: 12/23/2022] Open
Abstract
The pathological superoxidative condition that retinal pigment epithelium (RPE) cells experience contributed to the advancement of age-related macular degeneration (AMD), which was accompanied by significant neovascularization. Therefore, the discovery of novel pharmacological candidates to ameliorate oxidative damage (H2O2) against RPE cells and inhibit the following angiogenesis simultaneously is urgently needed. Herein, we found that kinsenoside (Kin), an active component derived from Anoectochilus roxburghii, was able to protect RPE cells effectively and attenuate subsequent angiogenesis. In this study, H2O2-induced oxidative injury reduced RPE cell viability and increased cell apoptosis, which was significantly rescued by the treatment with Kin. Compared with H2O2 alone, Kin decreased the levels of Bax and increased the production of Bcl-2 in RPE cells. H2O2-stimulated VEGF up-regulation was inhibited by Kin treatment. Human umbilical vein endothelial cell (HUVEC) neovascularization induced by conditioned medium (CM) from H2O2-stimulated RPE cells was attenuated by treatment with Kin, VEGF antagonist, NF-κB, Erk-MAPK, and p38-MAPK inhibitors. Additionally, H2O2-activated phosphorylated expression of IκBα, p65, Erk, and p38 in RPE cells was inhibited by treatment with Kin. Taken together, Kin protected RPE from apoptosis against oxidative stress while simultaneously decreasing apoptosis-related neovascularization. This could be ascribed to the inhibition of Erk/p38/NF-κB signaling by Kin that contributed to the resulting decreased VEGF expression in H2O2-treated RPE cells.
Collapse
Affiliation(s)
- Xu Luo
- Department of Ophthalmology, Shanghai Fourth People's Hospital, Shanghai, China
| | - Shengjie Gu
- Department of Ophthalmology, Shanghai Fourth People's Hospital, Shanghai, China
| | - Yujiao Zhang
- Department of Ophthalmology, Shanghai Fourth People's Hospital, Shanghai, China
| | - Jianhong Zhang
- Department of Ophthalmology, Shanghai Fourth People's Hospital, Shanghai, China
| |
Collapse
|