1
|
Kazemi A, Iraji A, Esmaealzadeh N, Salehi M, Hashempur MH. Peppermint and menthol: a review on their biochemistry, pharmacological activities, clinical applications, and safety considerations. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 38168664 DOI: 10.1080/10408398.2023.2296991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this manuscript, we conducted a comprehensive review of the diverse effects of peppermint on human health and explored the potential underlying mechanisms. Peppermint contains three main groups of phytochemical constituents, including essential oils (mainly menthol), flavonoids (such as hesperidin, eriodictyol, naringenin, quercetin, myricetin, and kaempferol), and nonflavonoid phenolcarboxylic acids. Peppermint exhibits antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, anti-cancer, anti-aging, and analgesic properties and may be effective in treating various disorders, including gastrointestinal disorders (e.g., irritable bowel syndrome, dyspepsia, constipation, functional gastrointestinal disorders, nausea/vomiting, and gallbladder stones). In addition, peppermint has therapeutic benefits for psychological and cognitive health, dental health, urinary retention, skin and wound healing, as well as anti-depressant and anti-anxiety effects, and it may improve memory. However, peppermint has paradoxical effects on sleep quality and alertness, as it has been shown to improve sleep quality in patients with fatigue and anxiety, while also increasing alertness under conditions of monotonous work and relaxation. We also discuss its protective effects against toxic agents at recommended doses, as well as its safety and potential toxicity. Overall, this review provides the latest findings and insights into the properties and clinical effects of peppermint/menthol and highlights its potential as a natural therapeutic agent for various health conditions.
Collapse
Affiliation(s)
- Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Salehi
- Traditional and Complementary Medicine Research Center (TCMRC), Department of Traditional Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Protective effect of Tisochrysis lutea on dry eye syndrome via NF-κB inhibition. Sci Rep 2022; 12:19576. [PMID: 36380046 PMCID: PMC9666437 DOI: 10.1038/s41598-022-23545-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Dry eye syndrome (DES) affects the cornea, causes pain and hypersensitivity to light. Although inflammation and endoplasmic reticulum stress are known to be involved, the detailed mechanisms remain unknown. DES is characterized by a decrease in corneal thickness, tear volume, and lacrimal gland size, and damage to corneal cells. Tisochrysis lutea is a microalga that has been shown to reduce immune factors. Therefore, we hypothesized that T. lutea could ameliorate DES. We investigated the role of T. lutea in scopolamine-induced DES in BALB/c mice. Oral administration of T. lutea increased corneal thickness, tear volume, and size of the corneal cells, and reduced damage to the corneal cells. Furthermore, treatment of ARPE-19 human retinal pigmented epithelial cells with T. lutea reduced expression of the inflammatory factor, NF-κB, MAPK, and AKT. T. lutea may be used therapeutically to reduce the symptoms of DES.
Collapse
|
3
|
Xu J, Tao X, Liu X, Yang L. Wearable Eye Patch Biosensor for Noninvasive and Simultaneous Detection of Multiple Biomarkers in Human Tears. Anal Chem 2022; 94:8659-8667. [DOI: 10.1021/acs.analchem.2c00614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jia Xu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Xiaoqin Tao
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Xiaoxuan Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| |
Collapse
|
4
|
Borchman D. Lipid conformational order and the etiology of cataract and dry eye. J Lipid Res 2021; 62:100039. [PMID: 32554545 PMCID: PMC7910524 DOI: 10.1194/jlr.tr120000874] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Lens and tear film lipids are as unique as the systems they reside in. The major lipid of the human lens is dihydrosphingomylein, found in quantity only in the lens. The lens contains a cholesterol to phospholipid molar ratio as high as 10:1, more than anywhere else in the body. Lens lipids contribute to maintaining lens clarity, and alterations in lens lipid composition due to age are likely to contribute to cataract. Lens lipid composition reflects adaptations to the unique characteristics of the lens: no turnover of lens lipids or proteins; the lowest amount of oxygen of any tissue; and contains almost no intracellular organelles. The tear film lipid layer (TFLL) is also unique. The TFLL is a thin (100 nm) layer of lipid on the surface of tears covering the cornea that contributes to tear film stability. The major lipids of the TFLL are wax esters and cholesterol esters that are not found in the lens. The hydrocarbon chains associated with the esters are longer than those found anywhere else in the body (as long as 32 carbons), and many are branched. Changes in the composition and structure of the 30,000 different moieties of TFLL contribute to the instability of tears. The focus of the current review is how spectroscopy has been used to elucidate the relationships between lipid composition, conformational order and function, and the etiology of cataract and dry eye.
Collapse
Affiliation(s)
- Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202.
| |
Collapse
|
5
|
Sebbag L, Mochel JP. An eye on the dog as the scientist's best friend for translational research in ophthalmology: Focus on the ocular surface. Med Res Rev 2020; 40:2566-2604. [PMID: 32735080 DOI: 10.1002/med.21716] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Preclinical animal studies provide valuable opportunities to better understand human diseases and contribute to major advances in medicine. This review provides a comprehensive overview of ocular parameters in humans and selected animals, with a focus on the ocular surface, detailing species differences in ocular surface anatomy, physiology, tear film dynamics and tear film composition. We describe major pitfalls that tremendously limit the translational potential of traditional laboratory animals (i.e., rabbits, mice, and rats) in ophthalmic research, and highlight the benefits of integrating companion dogs with clinical analogues to human diseases into preclinical pharmacology studies. This One Health approach can help accelerate and improve the framework in which ophthalmic research is translated to the human clinic. Studies can be conducted in canine subjects with naturally occurring or noninvasively induced ocular surface disorders (e.g., dry eye disease, conjunctivitis), reviewed herein, and tear fluid can be easily retrieved from canine eyes for various bioanalytical purposes. In this review, we discuss common tear collection methods, including capillary tubes and Schirmer tear strips, and provide guidelines for tear sampling and extraction to improve the reliability of analyte quantification (drugs, proteins, others).
Collapse
Affiliation(s)
- Lionel Sebbag
- Department of Biomedical Sciences, SMART Pharmacology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jonathan P Mochel
- Department of Biomedical Sciences, SMART Pharmacology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
6
|
The Protective Effect of an Eye Wash Solution on the Ocular Surface Damage Induced by Airborne Carbon Black Exposure. Cornea 2020; 39:1040-1047. [PMID: 32141942 DOI: 10.1097/ico.0000000000002304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the effects of an eye wash solution on the ocular surface damage induced by airborne carbon black (CB) exposure. METHODS Sprague-Dawley rats were exposed to ambient CB for 5 days. During the 5 days, a commercial eye wash solution (Eyebon-W) was used for irrigation twice daily on CB-exposed rat eyes; normal saline was used as the vehicle control. Lactic dehydrogenase (LDH) activity and matrix metallopeptidase (MMP)-9, histamine, and lactoferrin levels were measured in tears. The expression of inflammatory cytokines in the anterior segment of the eyeball was measured by Western blot analysis. RESULTS The ocular surface staining scores, tear LDH activity, tear MMP-9, histamine, and lactoferrin concentrations, and the expression of interleukin-4 and interferon-γ in the eye were significantly increased in the CB group versus the normal control group. When compared with CB group, the Eyebon-W eye wash treatment significantly reversed these elevations induced by CB, including ocular staining scores, tear LDH activity, histamine and MMP-9 concentrations in the tear fluid, and the expression of interleukin-4 in the eye. On the other hand, saline irrigation only reduced the concentrations of histamine and MMP-9 in tear fluid and the expression of interferon-γ in the eye. CONCLUSIONS Both Eyebon-W eye wash treatment and saline irrigation reversed CB-induced ocular surface injury, but the efficacy of Eyebon-W was more significant than that of the saline solution when compared with CB group. The use of an eye wash solution seems to play a protective role for the ocular surface when exposed to airborne particulate matter.
Collapse
|
7
|
Li X, Kang B, Eom Y, Lee HK, Kim HM, Song JS. The Protective Effect of a Topical Mucin Secretagogue on Ocular Surface Damage Induced by Airborne Carbon Black Exposure. Invest Ophthalmol Vis Sci 2019; 60:255-264. [PMID: 30649152 DOI: 10.1167/iovs.18-25964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Exposure to airborne particulate matter can induce ocular surface damage and inflammation. We evaluated the effects of a topical mucin secretagogue on the mitigation of ocular surface damage induced by exposure to airborne carbon black (CB). Methods Sprague-Dawley rats were exposed to ambient CB for 2 hours twice daily for 5 days. Corneal staining score and tear lactic dehydrogenase (LDH) activity were measured to evaluate ocular surface damage. Serum immunoglobulin (Ig) G and IgE levels and the sizes of cervical lymph nodes were also measured. The expressions of interleukin (IL)-4, IL-17, and interferon (IFN)-γ were measured by Western blot analysis. Diquafosol tetrasodium was instilled six times a day for 5 days, and the extent of ocular surface damage was evaluated. Results After exposure to airborne CB, the median corneal staining score and LDH activity were significantly increased. Serum IgG and IgE levels and the sizes of cervical lymph nodes were also significantly increased. Additionally, the expression of IL-4 and IFN-γ was elevated in the anterior segment of the eyeball. Furthermore, the expression of IL-4, IL-17, and IFN-γ was elevated in the cervical lymph nodes. When exposed to airborne black carbon, topical diquafosol tetrasodium significantly increased tear MUC5AC concentration and decreased tear LDH activity. Conclusions Exposure to airborne CB induced ocular surface damage and increased proinflammatory cytokines in the eyes and cervical lymph nodes. Topical mucin secretagogues seem to have a protective effect on the ocular surface against exposure to airborne particulate matters.
Collapse
Affiliation(s)
- Xiangzhe Li
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Boram Kang
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Youngsub Eom
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Hyung Keun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Myung Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Jong Suk Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Shah M, Cabrera-Ghayouri S, Christie LA, Held KS, Viswanath V. Translational Preclinical Pharmacologic Disease Models for Ophthalmic Drug Development. Pharm Res 2019; 36:58. [PMID: 30805711 PMCID: PMC6394514 DOI: 10.1007/s11095-019-2588-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
Preclinical models of human diseases are critical to our understanding of disease etiology, pathology, and progression and enable the development of effective treatments. An ideal model of human disease should capture anatomical features and pathophysiological mechanisms, mimic the progression pattern, and should be amenable to evaluating translational endpoints and treatment approaches. Preclinical animal models have been developed for a variety of human ophthalmological diseases to mirror disease mechanisms, location of the affected region in the eye and severity. These models offer clues to aid in our fundamental understanding of disease pathogenesis and enable progression of new therapies to clinical development by providing an opportunity to gain proof of concept (POC). Here, we review preclinical animal models associated with development of new therapies for diseases of the ocular surface, glaucoma, presbyopia, and retinal diseases, including diabetic retinopathy and age-related macular degeneration (AMD). We have focused on summarizing the models critical to new drug development and described the translational features of the models that contributed to our understanding of disease pathogenesis and establishment of preclinical POC.
Collapse
Affiliation(s)
- Mihir Shah
- Biological Research, Allergan plc, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Sara Cabrera-Ghayouri
- Biological Research, Allergan plc, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Lori-Ann Christie
- Biological Research, Allergan plc, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Katherine S Held
- Biological Research, Allergan plc, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Veena Viswanath
- Biological Research, Allergan plc, 2525 Dupont Drive, Irvine, California, 92612, USA.
| |
Collapse
|