1
|
Li T, Tang J, Li C, Liu G, Li Y, Guo S, Fang Q, Li J, Qi X, Liu X, Du J, Zhang D, Xiong S, Li J, Tan Y, Li B, Dai C, Zhang Q, Li J, Wu X. Evaluating the efficacy and safety of polyglycolic acid-loading mitomycin nanoparticles in inhibiting the scar proliferation after glaucoma filtering surgery. Ann Med 2025; 57:2436458. [PMID: 39632730 PMCID: PMC11622377 DOI: 10.1080/07853890.2024.2436458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/05/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE To prepare a polyglycolic acid-loaded mitomycin drug (MMC-ATS-@PLGA) to inhibit scar proliferation after glaucoma filtering surgery (GFS) via an anti-inflammatory mechanism that minimally affected intraocular pressure, which provided another therapeutic strategy for this disease. METHODS We first detected the physicochemical properties of MMC-ATS-@PLGA. Next, we tested the biosafety of MMC-ATS-@PLGA in vivo and in vitro. Then, we assessed the therapeutic effects of MMC-ATS-@PLGA by laboratory and clinical examinations. RESULTS In this study, we synthesized a new type of nanomedicine (MMC-ATS-@PLGA) with good stability and biocompatibility for inhibiting scar proliferation after GFS. The break-up time (BUT), Schimer test and intraocular pressure changes in GFS rabbits before and after treatment with MMC-ATS-@PLGA were not significantly different. Three weeks after GFS, the MMC-ATS-@PLGA group displayed significant decreases in nuclear volume, corneal cell oedema, type I and III collagen fibre expression, normal organelle morphology and collagen fibre arrangement. Compared with those in the FML and MMC groups, the α-SMA, CTGF and type III collagen fibres in the MMC-ATS-@PLGA group decreased more significantly, indicating that MMC-ATS-@PLGA can effectively inhibit the expression of these inflammatory factors during the inhibition of scar proliferation after GFS. CONCLUSION We successfully synthesized MMC-ATS-@PLGA, which could effectively inhibit scar proliferation after GFS via anti-inflammatory effects but had little effect on intraocular pressure. This new type of nanomedicine has good biosafety and stability and is worthy of further exploration in clinical practice.
Collapse
Affiliation(s)
- Tao Li
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Juan Tang
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Endocrinology, Zi Yang Central Hospital, Sichuan, China
| | - Changfen Li
- Department of Pathology, Zi Yang Central Hospital, Sichuan, China
| | - Guogang Liu
- Department of Dermatology, Zi Yang Central Hospital, Sichuan, China
| | - Ying Li
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Shanlan Guo
- Department of Pathology, Zi Yang Central Hospital, Sichuan, China
| | - Qilin Fang
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Jing Li
- Department of Pathology, Zi Yang Central Hospital, Sichuan, China
| | - Xing Qi
- Department of Experimental Medicine, Zi Yang Central Hospital, Sichuan, China
| | - Xingde Liu
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Juan Du
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Dan Zhang
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Silun Xiong
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Jiaqian Li
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Yueyue Tan
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Biao Li
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Chuanqiang Dai
- Department of Medical Education, Zi Yang Central Hospital, Sichuan, China
| | - Qinqin Zhang
- Department of Medical Education, Zi Yang Central Hospital, Sichuan, China
| | - Jiaman Li
- Department of Anesthesia Operation Center, Zi Yang Central Hospital, Sichuan, China
| | - Xiaoli Wu
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| |
Collapse
|
2
|
Dave B, Patel M, Suresh S, Ginjupalli M, Surya A, Albdour M, Kooner KS. Wound Modulations in Glaucoma Surgery: A Systematic Review. Bioengineering (Basel) 2024; 11:446. [PMID: 38790314 PMCID: PMC11117829 DOI: 10.3390/bioengineering11050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Excessive fibrosis and resultant poor control of intraocular pressure (IOP) reduce the efficacy of glaucoma surgeries. Historically, corticosteroids and anti-fibrotic agents, such as mitomycin C (MMC) and 5-fluorouracil (5-FU), have been used to mitigate post-surgical fibrosis, but these have unpredictable outcomes. Therefore, there is a need to develop novel treatments which provide increased effectiveness and specificity. This review aims to provide insight into the pathophysiology behind wound healing in glaucoma surgery, as well as the current and promising future wound healing agents that are less toxic and may provide better IOP control.
Collapse
Affiliation(s)
- Bhoomi Dave
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
- Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Monica Patel
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
| | - Sruthi Suresh
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
| | - Mahija Ginjupalli
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
| | - Arvind Surya
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
| | - Mohannad Albdour
- Department of Ophthalmology, King Hussein Medical Center Royal Medical Services, Amman 11180, Jordan;
| | - Karanjit S. Kooner
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
- Department of Ophthalmology, Veteran Affairs North Texas Health Care System Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
3
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|
4
|
Alenchery RG, Ajalik RE, Jerreld K, Midekksa F, Zhong S, Alkatib B, Awad HA. PAI-1 mediates TGF-β1-induced myofibroblast activation in tenocytes via mTOR signaling. J Orthop Res 2023; 41:2163-2174. [PMID: 37143206 PMCID: PMC10524825 DOI: 10.1002/jor.25594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/04/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Transforming growth factor-beta (TGF-β1) induces plasminogen activator inhibitor 1 (PAI-1) to effect fibrotic pathologies in several organs including tendon. Recent data implicated PAI-1 with inhibition of phosphatase and tensin homolog (PTEN) suggesting that PAI-1-induced adhesions involves phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) signaling. Ergo, we investigated effects of TGF-β1, PAI-1, and mTOR signaling crosstalk on myofibroblast activation, senescence, and proliferation in primary flexor tenocytes from wild-type (WT) and PAI-1 knockout (KO) mice. PAI-1 deletion blunted TGF-β1-induced myofibroblast activation in murine flexor tenocytes and increased the gene expression of Mmp-2 to confer protective effects against fibrosis. While TGF-β1 significantly reduced phosphorylation of PTEN in WT cells, PAI-1 deletion rescued the activation of PTEN. Despite that, there were no differences in TGF-β1-induced activation of mTOR signaling (AKT, 4EBP1, and P70S6K) in WT or KO tenocytes. Phenotypic changes in distinct populations of WT or KO tenocytes exhibiting high or low mTOR activity were then examined. TGF-β1 increased alpha-smooth muscle actin abundance in WT cells exhibiting high mTOR activity, but this increase was blunted in KO cells exhibiting high 4EBP1 activity but not in cells exhibiting high S6 activity. DNA damage (γH2AX) was increased with TGF-β1 treatment in WT tenocytes but was blunted in KO cells exhibiting high mTOR activity. Increased mTOR activity enhanced proliferation (Ki67) in both WT and KO tenocytes. These findings point to a complex nexus of TGF-β1, PAI-1, and mTOR signaling in regulating proliferation, myofibroblast differentiation, and senescence in tenocytes, which could define therapeutic targets for chronic tendon adhesions and other fibrotic pathologies.
Collapse
Affiliation(s)
- Rahul G Alenchery
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Raquel E Ajalik
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Kyle Jerreld
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, NY, United States
| | - Firaol Midekksa
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Sylvia Zhong
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Bashar Alkatib
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| |
Collapse
|
5
|
Yu S, Tam ALC, Campbell R, Renwick N. Emerging Evidence of Noncoding RNAs in Bleb Scarring after Glaucoma Filtration Surgery. Cells 2022; 11:1301. [PMID: 35455980 PMCID: PMC9029189 DOI: 10.3390/cells11081301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To conduct a narrative review of research articles on the potential anti- and pro-fibrotic mechanisms of noncoding RNAs following glaucoma filtration surgery. METHODS Keyword searches of PubMed, and Medline databases were conducted for articles discussing post-glaucoma filtration surgeries and noncoding RNA. Additional manual searches of reference lists of primary articles were performed. RESULTS Fifteen primary research articles were identified. Four of the included papers used microarrays and qRT-PCR to identify up- or down-regulated microRNA (miRNA, miR) profiles and direct further study, with the remainder focusing on miRNAs or long noncoding RNAs (lncRNAs) based on previous work in other organs or disease processes. The results of the reviewed papers identified miR-26a, -29b, -139, -155, and -200a as having anti-fibrotic effects. In contrast, miRs-200b and -216b may play pro-fibrotic roles in filtration surgery fibrosis. lncRNAs including H19, NR003923, and 00028 have demonstrated pro-fibrotic effects. CONCLUSIONS Noncoding RNAs including miRNAs and lncRNAs are emerging and promising therapeutic targets in the prevention of post-glaucoma filtration surgery fibrosis.
Collapse
Affiliation(s)
- Sabrina Yu
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Alex L. C. Tam
- Department of Ophthalmology and Visual Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.L.C.T.); (R.C.)
| | - Robert Campbell
- Department of Ophthalmology and Visual Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.L.C.T.); (R.C.)
| | - Neil Renwick
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
6
|
Wang X, Song W, Zhang F, Huang R. Dihydroartemisinin Inhibits TGF-β-Induced Fibrosis in Human Tenon Fibroblasts via Inducing Autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:973-981. [PMID: 33688170 PMCID: PMC7937381 DOI: 10.2147/dddt.s280322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Background The formation of hypertrophic scars (HS) can result in the failure of glaucoma surgery, and fibrosis is known to be closely associated with the progression of HS. Dihydroartemisinin (DHA) has been reported to inhibit the progression of fibrosis; however, whether DHA can alleviate the formation of HS remains unclear. Methods In the present study, in order to examine the effects of DHA on the progression of HS, human Tenon's capsule fibroblasts (HTFs) were isolated from patients who underwent glaucoma surgery. In addition, Western blot analysis, microtubule associated protein 1 light chain 3 α staining and reverse transcription-quantitative PCR were performed to detect protein and mRNA expression levels in the HTFs, respectively. Cell proliferation was detected by Ki67 staining. Flow cytometry was used to examine apoptosis and reactive oxygen species (ROS) levels in the HTFs. Results The results revealed that TGF-β promoted the proliferation and fibrosis of HTFs; however, DHA significantly reversed the effects of TGF-β by increasing cell autophagy. In addition, DHA notably induced the apoptosis of TGF-β-stimulated HTFs by increasing the ROS levels, while these increases were partially reversed by 3-methyladenine. Furthermore, DHA notably increased the expression of microRNA (miR)-145-5p in HTFs in a dose-dependent manner. Conclusion The present study demonstrated that DHA inhibits the TGF-β-induced fibrosis of HTFs by inducing autophagy. These findings may aid in the development of novel agents for the prevention of the formation of HS following glaucoma surgery.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Wuqi Song
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Renping Huang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| |
Collapse
|
7
|
Rong R, Wang M, You M, Li H, Xia X, Ji D. Pathogenesis and prospects for therapeutic clinical application of noncoding RNAs in glaucoma: Systematic perspectives. J Cell Physiol 2021; 236:7097-7116. [PMID: 33634475 PMCID: PMC8451868 DOI: 10.1002/jcp.30347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Noncoding ribonucleic acids (ncRNAs) are an increasingly studied class of RNA molecules with extensive biological activities, including important roles in human development, health, and disease. Glaucoma is a neurodegenerative disease of the retina, and one of the leading causes of blindness worldwide. However, the specific roles of ncRNAs in the development and progression of glaucoma are unclear, and related reports are fragmented. An in‐depth understanding of ncRNAs participating in the pathogenesis and progression of glaucoma would be helpful for opening up new avenues to facilitate the early diagnosis and clinical treatment. Therefore, in this review, we aimed to discuss the current research progress, the potentialfuture clinical applications and the research limitations of three critical classes of ncRNAs in glaucoma, namely microRNAs, long noncoding RNAs, and circular RNAs.
Collapse
Affiliation(s)
- Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Mengxiao Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Mengling You
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Haibo Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| |
Collapse
|
8
|
Freeberg MAT, Easa A, Lillis JA, Benoit DS, van Wijnen AJ, Awad HA. Transcriptomic Analysis of Cellular Pathways in Healing Flexor Tendons of Plasminogen Activator Inhibitor 1 (PAI-1/Serpine1) Null Mice. J Orthop Res 2020; 38:43-58. [PMID: 31424116 PMCID: PMC7364818 DOI: 10.1002/jor.24448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/07/2019] [Indexed: 02/04/2023]
Abstract
Injuries to flexor tendons can be complicated by fibrotic adhesions, which severely impair the function of the hand. Plasminogen activator inhibitor 1 (PAI-1/SERPINE1), a master suppressor of fibrinolysis and protease activity, is associated with adhesions. Here, we used next-generation RNA sequencing (RNA-Seq) to assess genome-wide differences in messenger RNA expression due to PAI-1 deficiency after zone II flexor tendon injury. We used the ingenuity pathway analysis to characterize molecular pathways and biological drivers associated with differentially expressed genes (DEG). Analysis of hundreds of overlapping and DEG in PAI-1 knockout (KO) and wild-type mice (C57Bl/6J) during tendon healing revealed common and distinct biological processes. Pathway analysis identified cell proliferation, survival, and senescence, as well as chronic inflammation as potential drivers of fibrotic healing and adhesions in injured tendons. Importantly, we identified the activation of PTEN signaling and the inhibition of FOXO1-associated biological processes as unique transcriptional signatures of the healing tendon in the PAI-1/Serpine1 KO mice. Further, transcriptomic differences due to the genetic deletion of PAI-1 were mechanistically linked to PI3K/Akt/mTOR, PKC, and MAPK signaling cascades. These transcriptional observations provide novel insights into the biological roles of PAI-1 in tendon healing and could identify therapeutic targets to achieve scar-free regenerative healing of tendons. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:43-58, 2020.
Collapse
Affiliation(s)
- Margaret A. T. Freeberg
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States,Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States
| | - Anas Easa
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States
| | - Jacquelyn A. Lillis
- Genomics Research Center, University of Rochester, Rochester, NY, United States
| | - Danielle S.W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States,Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States
| | | | - Hani A. Awad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States,Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States,Department of Orthopedics, University of Rochester, Rochester, NY, United States
| |
Collapse
|