1
|
Bodgi L, Pujo-Menjouet L, Bouchet A, Bourguignon M, Foray N. Seventy Years of Dose-response Models: From the Target Theory to the Use of Big Databases Involving Cell Survival and DNA Repair. Radiat Res 2024; 202:130-142. [PMID: 38802101 DOI: 10.1667/rade-24-00015.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
Radiobiological data, whether obtained at the clinical, biological or molecular level has significantly contributed to a better description and prediction of the individual dose-response to ionizing radiation and a better estimation of the radiation-induced risks. Particularly, over the last seventy years, the amount of radiobiological data has considerably increased, and permitted the mathematical formulas describing dose-response to become less empirical. A better understanding of the basic radiobiological mechanisms has also contributed to establish quantitative inter-correlations between clinical, biological and molecular biomarkers, refining again the mathematical models of description. Today, big data approaches and, more recently, artificial intelligence may finally complete and secure this long process of thinking from the multi-scale description of radiation-induced events to their prediction. Here, we reviewed the major dose-response models applied in radiobiology for quantifying molecular and cellular radiosensitivity and aimed to explain their evolution: Specifically, we highlighted the advances concerning the target theory with the cell survival models and the progressive introduction of the DNA repair process in the mathematical models. Furthermore, we described how the technological advances have changed the description of DNA double-strand break (DSB) repair kinetics by introducing the important notion of DSB recognition, independent of that of DSB repair. Initially developed separately, target theory on one hand and, DSB recognition and repair, on the other hand may be now fused into a unified model involving the cascade of phosphorylations mediated by the ATM kinase in response to any genotoxic stress.
Collapse
Affiliation(s)
- Larry Bodgi
- U1296 Unit "Radiation: Defense, Health, Environment," 69008, Lyon, France
- Department of Radiation Oncology, American University of Beirut Medical Center
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Laurent Pujo-Menjouet
- U1296 Unit "Radiation: Defense, Health, Environment," 69008, Lyon, France
- Université Claude Bernard Lyon 1, Institut Camille Jordan UMR5208, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, Inria Dracula, 69622 Villeurbanne, France
| | - Audrey Bouchet
- U1296 Unit "Radiation: Defense, Health, Environment," 69008, Lyon, France
| | - Michel Bourguignon
- U1296 Unit "Radiation: Defense, Health, Environment," 69008, Lyon, France
- Université Paris-Saclay, 78035, Versailles, France
| | - Nicolas Foray
- U1296 Unit "Radiation: Defense, Health, Environment," 69008, Lyon, France
| |
Collapse
|
2
|
Bodgi L, Bou-Gharios J, Azzi J, Challita R, Feghaly C, Baalbaki K, Kharroubi H, Chhade F, Geara F, Abou-Kheir W, Ayoub Z. Effect of bisphosphonates and statins on the in vitro radiosensitivity of breast cancer cell lines. Pharmacol Rep 2024; 76:171-184. [PMID: 38151641 DOI: 10.1007/s43440-023-00560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Early-stage breast cancer is usually treated with breast-conserving surgery followed by adjuvant radiation therapy. Acute skin toxicity is a common radiation-induced side effect experienced by many patients. Recently, a combination of bisphosphonates (zoledronic acid) and statins (pravastatin), or ZOPRA, was shown to radio-protect normal tissues by enhancing DNA double-strand breaks (DSB) repair mechanism. However, there are no studies assessing the effect of ZOPRA on cancerous cells. The purpose of this study is to characterize the in vitro effect of the zoledronic acid (ZO), pravastatin (PRA), and ZOPRA treatment on the molecular and cellular radiosensitivity of breast cancer cell lines. MATERIALS Two breast cancer cell lines, MDA MB 231 and MCF-7, were tested. Cells were treated with different concentrations of pravastatin (PRA), zoledronate (ZO), as well as their ZOPRA combination, before irradiation. Anti-γH2AX and anti-pATM immunofluorescence were performed to study DNA DSB repair kinetics. MTT assay was performed to assess cell proliferation and viability, and flow cytometry was performed to analyze the effect of the drugs on the cell cycle distribution. The clonogenic assay was used to assess cell survival. RESULTS ZO, PRA, and ZOPRA treatments were shown to increase the residual number of γH2AX foci for both cell lines. ZOPRA treatment was also shown to reduce the activity of the ATM kinase in MCF-7. ZOPRA induced a significant decrease in cell survival for both cell lines. CONCLUSIONS Our findings show that pretreatment with ZOPRA can decrease the radioresistance of breast cancer cells at the molecular and cellular levels. The fact that ZOPRA was previously shown to radioprotect normal tissues, makes it a good candidate to become a therapeutic window-widening drug.
Collapse
Affiliation(s)
- Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jolie Bou-Gharios
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Joyce Azzi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rafka Challita
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Charbel Feghaly
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Khanom Baalbaki
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Kharroubi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fatima Chhade
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fady Geara
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Zeina Ayoub
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
3
|
Tam A, Mercier BD, Thomas RM, Tizpa E, Wong IG, Shi J, Garg R, Hampel H, Gray SW, Williams T, Bazan JG, Li YR. Moving the Needle Forward in Genomically-Guided Precision Radiation Treatment. Cancers (Basel) 2023; 15:5314. [PMID: 38001574 PMCID: PMC10669735 DOI: 10.3390/cancers15225314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
Radiation treatment (RT) is a mainstay treatment for many types of cancer. Recommendations for RT and the radiation plan are individualized to each patient, taking into consideration the patient's tumor pathology, staging, anatomy, and other clinical characteristics. Information on germline mutations and somatic tumor mutations is at present rarely used to guide specific clinical decisions in RT. Many genes, such as ATM, and BRCA1/2, have been identified in the laboratory to confer radiation sensitivity. However, our understanding of the clinical significance of mutations in these genes remains limited and, as individual mutations in such genes can be rare, their impact on tumor response and toxicity remains unclear. Current guidelines, including those from the National Comprehensive Cancer Network (NCCN), provide limited guidance on how genetic results should be integrated into RT recommendations. With an increasing understanding of the molecular underpinning of radiation response, genomically-guided RT can inform decisions surrounding RT dose, volume, concurrent therapies, and even omission to further improve oncologic outcomes and reduce risks of toxicities. Here, we review existing evidence from laboratory, pre-clinical, and clinical studies with regard to how genetic alterations may affect radiosensitivity. We also summarize recent data from clinical trials and explore potential future directions to utilize genetic data to support clinical decision-making in developing a pathway toward personalized RT.
Collapse
Affiliation(s)
- Andrew Tam
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Benjamin D. Mercier
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Reeny M. Thomas
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Eemon Tizpa
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Irene G. Wong
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Juncong Shi
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Rishabh Garg
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Stacy W. Gray
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Terence Williams
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Jose G. Bazan
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Yun R. Li
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Division of Quantitative Medicine & Systems Biology, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85022, USA
| |
Collapse
|
4
|
Quantitative Correlations between Radiosensitivity Biomarkers Show That the ATM Protein Kinase Is Strongly Involved in the Radiotoxicities Observed after Radiotherapy. Int J Mol Sci 2022; 23:ijms231810434. [PMID: 36142346 PMCID: PMC9498991 DOI: 10.3390/ijms231810434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue overreactions (OR), whether called adverse effects, radiotoxicity, or radiosensitivity reactions, may occur during or after anti-cancer radiotherapy (RT). They represent a medical, economic, and societal issue and raise the question of individual response to radiation. To predict and prevent them are among the major tasks of radiobiologists. To this aim, radiobiologists have developed a number of predictive assays involving different cellular models and endpoints. To date, while no consensus has been reached to consider one assay as the best predictor of the OR occurrence and severity, radiation oncologists have proposed consensual scales to quantify OR in six different grades of severity, whatever the organ/tissue concerned and their early/late features. This is notably the case with the Common Terminology Criteria for Adverse Events (CTCAE). Few radiobiological studies have used the CTCAE scale as a clinical endpoint to evaluate the statistical robustness of the molecular and cellular predictive assays in the largest range of human radiosensitivity. Here, by using 200 untransformed skin fibroblast cell lines derived from RT-treated cancer patients eliciting OR in the six CTCAE grades range, correlations between CTCAE grades and the major molecular and cellular endpoints proposed to predict OR (namely, cell survival at 2 Gy (SF2), yields of micronuclei, recognized and unrepaired DSBs assessed by immunofluorescence with γH2AX and pATM markers) were examined. To our knowledge, this was the first time that the major radiosensitivity endpoints were compared together with the same cohort and irradiation conditions. Both SF2 and the maximal number of pATM foci reached after 2 Gy appear to be the best predictors of the OR, whatever the CTCAE grades range. All these major radiosensitivity endpoints are mathematically linked in a single mechanistic model of individual response to radiation in which the ATM kinase plays a major role.
Collapse
|
5
|
Köcher S, Zech HB, Krug L, Gatzemeier F, Christiansen S, Meyer F, Rietow R, Struve N, Mansour WY, Kriegs M, Petersen C, Betz C, Rothkamm K, Rieckmann T. A Lack of Effectiveness in the ATM-Orchestrated DNA Damage Response Contributes to the DNA Repair Defect of HPV-Positive Head and Neck Cancer Cells. Front Oncol 2022; 12:765968. [PMID: 35719921 PMCID: PMC9204973 DOI: 10.3389/fonc.2022.765968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with human papillomavirus-positive squamous cell carcinoma of the head and neck (HPV+ HNSCC) have a favorable prognosis compared to those with HPV-negative (HPV−) ones. We have shown previously that HPV+ HNSCC cell lines are characterized by enhanced radiation sensitivity and impaired DNA double-strand break (DSB) repair. Since then, various publications have suggested a defect in homologous recombination (HR) and dysregulated expression of DSB repair proteins as underlying mechanisms, but conclusions were often based on very few cell lines. When comparing the expression levels of suggested proteins and other key repair factors in 6 HPV+ vs. 5 HPV− HNSCC strains, we could not confirm most of the published differences. Furthermore, HPV+ HNSCC strains did not demonstrate enhanced sensitivity towards PARP inhibition, questioning a general HR defect. Interestingly, our expression screen revealed minimal levels of the central DNA damage response kinase ATM in the two most radiosensitive HPV+ strains. We therefore tested whether insufficient ATM activity may contribute to the enhanced cellular radiosensitivity. Irrespective of their ATM expression level, radiosensitive HPV+ HNSCC cells displayed DSB repair kinetics similar to ATM-deficient cells. Upon ATM inhibition, HPV+ cell lines showed only a marginal increase in residual radiation-induced γH2AX foci and induction of G2 cell cycle arrest as compared to HPV− ones. In line with these observations, ATM inhibition sensitized HPV+ HNSCC strains less towards radiation than HPV− strains, resulting in similar levels of sensitivity. Unexpectedly, assessment of the phosphorylation kinetics of the ATM targets KAP-1 and Chk2 as well as ATM autophosphorylation after radiation did not indicate directly compromised ATM activity in HPV-positive cells. Furthermore, ATM inhibition delayed radiation induced DNA end resection in both HPV+ and HPV− cells to a similar extent, further suggesting comparable functionality. In conclusion, DNA repair kinetics and a reduced effectiveness of ATM inhibition clearly point to an impaired ATM-orchestrated DNA damage response in HPV+ HNSCC cells, but since ATM itself is apparently functional, the molecular mechanisms need to be further explored.
Collapse
Affiliation(s)
- Sabrina Köcher
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrike Barbara Zech
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Krug
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Christiansen
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Meyer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruth Rietow
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Department, Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wael Yassin Mansour
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Thorsten Rieckmann,
| |
Collapse
|
6
|
Al-Choboq J, Ferlazzo ML, Sonzogni L, Granzotto A, El-Nachef L, Maalouf M, Berthel E, Foray N. Usher Syndrome Belongs to the Genetic Diseases Associated with Radiosensitivity: Influence of the ATM Protein Kinase. Int J Mol Sci 2022; 23:ijms23031570. [PMID: 35163494 PMCID: PMC8836140 DOI: 10.3390/ijms23031570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/23/2022] Open
Abstract
Usher syndrome (USH) is a rare autosomal recessive disease characterized by the combination of hearing loss, visual impairment due to retinitis pigmentosa, and in some cases vestibular dysfunctions. Studies published in the 1980s reported that USH is associated with cellular radiosensitivity. However, the molecular basis of this particular phenotype has not yet been documented. The aim of this study was therefore to document the radiosensitivity of USH1—a subset of USH—by examining the radiation-induced nucleo-shuttling of ATM (RIANS), as well as the functionality of the repair and signaling pathways of the DNA double-strand breaks (DSBs) in three skin fibroblasts derived from USH1 patients. The clonogenic cell survival, the micronuclei, the nuclear foci formed by the phosphorylated forms of the X variant of the H2A histone (ɣH2AX), the phosphorylated forms of the ATM protein (pATM), and the meiotic recombination 11 nuclease (MRE11) were used as cellular and molecular endpoints. The interaction between the ATM and USH1 proteins was also examined by proximity ligation assay. The results showed that USH1 fibroblasts were associated with moderate but significant radiosensitivity, high yield of micronuclei, and impaired DSB recognition but normal DSB repair, likely caused by a delayed RIANS, suggesting a possible sequestration of ATM by some USH1 proteins overexpressed in the cytoplasm. To our knowledge, this report is the first radiobiological characterization of cells from USH1 patients at both molecular and cellular scales.
Collapse
Affiliation(s)
- Joëlle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
| | - Mélanie L. Ferlazzo
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
| | - Adeline Granzotto
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
| | - Laura El-Nachef
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
| | - Mira Maalouf
- Department of Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Fanar 1202, Lebanon;
| | - Elise Berthel
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France; (J.A.-C.); (M.L.F.); (L.S.); (A.G.); (L.E.-N.); (E.B.)
- Correspondence: ; Tel.: +33-4-78-78-28-28
| |
Collapse
|
7
|
Avoidance or adaptation of radiotherapy in patients with cancer with Li-Fraumeni and heritable TP53-related cancer syndromes. Lancet Oncol 2021; 22:e562-e574. [PMID: 34856153 DOI: 10.1016/s1470-2045(21)00425-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
The management of patients with cancer and Li-Fraumeni or heritable TP53-related cancer syndromes is complex because of their increased risk of developing second malignant neoplasms after genotoxic stresses such as systemic treatments or radiotherapy (radiosusceptibility). Clinical decision making also integrates the risks of normal tissue toxicity and sequelae (radiosensitivity) and tumour response to radiotherapy (radioresistance and radiocurability). Radiotherapy should be avoided in patients with cancer and Li-Fraumeni or heritable TP53 cancer-related syndromes, but overall prognosis might be poor without radiotherapy: radioresistance in these patients seems similar to or worse than that of the general population. Radiosensitivity in germline TP53 variant carriers seems similar to that in the general population. The risk of second malignant neoplasms according to germline TP53 variant and the patient's overall oncological prognosis should be assessed during specialised multidisciplinary staff meetings. Radiotherapy should be avoided whenever other similarly curative treatment options are available. In other cases, it should be adapted to minimise the risk of second malignant neoplasms in patients who still require radiotherapy despite its genotoxicity, in view of its potential benefit. Adaptations might be achieved through the reduction of irradiated volumes using proton therapy, non-ionising diagnostic procedures, image guidance, and minimal stray radiation. Non-ionising imaging should become more systematic. Radiotherapy approaches that might result in a lower probability of misrepaired DNA damage (eg, particle therapy biology and tumour targeting) are an area of investigation.
Collapse
|
8
|
Combemale P, Sonzogni L, Devic C, Bencokova Z, Ferlazzo ML, Granzotto A, Burlet SF, Pinson S, Amini-Adle M, Al-Choboq J, Bodgi L, Bourguignon M, Balosso J, Bachelet JT, Foray N. Individual Response to Radiation of Individuals with Neurofibromatosis Type I: Role of the ATM Protein and Influence of Statins and Bisphosphonates. Mol Neurobiol 2021; 59:556-573. [PMID: 34727321 DOI: 10.1007/s12035-021-02615-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/21/2021] [Indexed: 11/26/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a disease characterized by high occurrence of benign and malignant brain tumours and caused by mutations of the neurofibromin protein. While there is an increasing evidence that NF1 is associated with radiosensitivity and radiosusceptibility, few studies have dealt with the molecular and cellular radiation response of cells from individuals with NF1. Here, we examined the ATM-dependent signalling and repair pathways of the DNA double-strand breaks (DSB), the key-damage induced by ionizing radiation, in skin fibroblast cell lines from 43 individuals with NF1. Ten minutes after X-rays irradiation, quiescent NF1 fibroblasts showed abnormally low rate of recognized DSB reflected by a low yield of nuclear foci formed by phosphorylated H2AX histones. Irradiated NF1 fibroblasts also presented a delayed radiation-induced nucleoshuttling of the ATM kinase (RIANS), potentially due to a specific binding of ATM to the mutated neurofibromin in cytoplasm. Lastly, NF1 fibroblasts showed abnormally high MRE11 nuclease activity suggesting a high genomic instability after irradiation. A combination of bisphosphonates and statins complemented these impairments by accelerating the RIANS, increasing the yield of recognized DSB and reducing genomic instability. Data from NF1 fibroblasts exposed to radiation in radiotherapy and CT scan conditions confirmed that NF1 belongs to the group of syndromes associated with radiosensitivity and radiosusceptibility.
Collapse
Affiliation(s)
- Patrick Combemale
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
- Centre Léon-Bérard, 69008, Lyon, France
| | - Laurène Sonzogni
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
| | - Clément Devic
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
| | - Zuzana Bencokova
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
| | - Mélanie Lydia Ferlazzo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
| | - Adeline Granzotto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
| | - Steven Franck Burlet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
| | - Stéphane Pinson
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
- Centre Léon-Bérard, 69008, Lyon, France
| | - Mona Amini-Adle
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
- Centre Léon-Bérard, 69008, Lyon, France
| | - Joëlle Al-Choboq
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
| | - Larry Bodgi
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
| | - Michel Bourguignon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
- Université de Versailles-Saint Quentin en Yvelines, 78035, Versailles, France
| | - Jacques Balosso
- Service de Radiothérapie, CHU de Grenoble, 38042, Grenoble, France
| | - Jean-Thomas Bachelet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France
| | - Nicolas Foray
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1296 Research Unit « Radiation : Defense, Health and Environment », Centre Léon-Bérard, 69008, Lyon, France.
| |
Collapse
|
9
|
El-Nachef L, Al-Choboq J, Restier-Verlet J, Granzotto A, Berthel E, Sonzogni L, Ferlazzo ML, Bouchet A, Leblond P, Combemale P, Pinson S, Bourguignon M, Foray N. Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Int J Mol Sci 2021; 22:7158. [PMID: 34281212 PMCID: PMC8267933 DOI: 10.3390/ijms22137158] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The individual response to ionizing radiation (IR) raises a number of medical, scientific, and societal issues. While the term "radiosensitivity" was used by the pioneers at the beginning of the 20st century to describe only the radiation-induced adverse tissue reactions related to cell death, a confusion emerged in the literature from the 1930s, as "radiosensitivity" was indifferently used to describe the toxic, cancerous, or aging effect of IR. In parallel, the predisposition to radiation-induced adverse tissue reactions (radiosensitivity), notably observed after radiotherapy appears to be caused by different mechanisms than those linked to predisposition to radiation-induced cancer (radiosusceptibility). This review aims to document these differences in order to better estimate the different radiation-induced risks. It reveals that there are very few syndromes associated with the loss of biological functions involved directly in DNA damage recognition and repair as their role is absolutely necessary for cell viability. By contrast, some cytoplasmic proteins whose functions are independent of genome surveillance may also act as phosphorylation substrates of the ATM protein to regulate the molecular response to IR. The role of the ATM protein may help classify the genetic syndromes associated with radiosensitivity and/or radiosusceptibility.
Collapse
Affiliation(s)
- Laura El-Nachef
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Joelle Al-Choboq
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Juliette Restier-Verlet
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Adeline Granzotto
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Elise Berthel
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
- Neolys Diagnostics, 67960 Entzheim, France
| | - Laurène Sonzogni
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Mélanie L. Ferlazzo
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Audrey Bouchet
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Pierre Leblond
- Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (P.L.); (P.C.)
| | - Patrick Combemale
- Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (P.L.); (P.C.)
| | - Stéphane Pinson
- Hospices Civils de Lyon, Quai des Célestins, 69002 Lyon, France;
| | - Michel Bourguignon
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
- Université Paris Saclay Versailles St Quentin en Yvelines, 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| |
Collapse
|