1
|
Liu Y, Zhang Y, Wang Y, Dong R, Chen Y. The Role of Pentacam Random Forest Index in Detecting Subclinical Keratoconus in a Chinese Cohort. Diagnostics (Basel) 2024; 14:2304. [PMID: 39451627 PMCID: PMC11506929 DOI: 10.3390/diagnostics14202304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose: This study aimed to evaluate the diagnostic accuracy of a novel shape index, the Pentacam Random Forest Index (PRFI), in detecting keratoconus (KC), specifically subclinical keratoconus, in Chinese refractive surgery candidates. Methods: This prospective cohort study included 856 participants who were divided into four groups based on their tomographic outcomes: the KC group (n = 137), the very asymmetric ectasia (VAE) group (n = 73), the normal cornea group (n = 363) and the tomographically suspected KC (TSK) group (n = 283). The diagnostic performance of PRFI and other widely used indices, including the shape index BAD-D and the combined index TBI, was assessed using receiver operating characteristic (ROC) curve analysis and compared using DeLong's test. The area under the curve (AUC), best cutoff values, and Youden index for each parameter are reported. Additionally, the false-positive rates of BAD-D and PRFI were calculated and compared in "normal corneas". Results: All shape and biomechanical parameters collected in this study were found to be significantly different among the four groups (KC, VAE, TSK, and normal groups; p = 0.000). The AUC of PRFI was the highest in detecting any form of KC (including clinical KC eyes and VAE-NT eyes) in Chinese refractive surgery candidates, outperforming the widely used shape index BAD-D (0.919 vs. 0.890, p < 0.001). There was no significant difference in performance between the PRFI and the combined TBI index (0.919 vs. 0.916, p > 0.05). For detecting subclinical KC eyes (i.e., VAE-NT), the AUC of PRFI was 0.774, which was statistically comparable to TBI (0.774 vs. 0.776, p > 0.05), while outperforming BAD-D (0.774 vs. 0.684, p < 0.001). The best cutoff values of PRFI for detecting any KC and VAE-NT eyes were determined to be 0.37 and 0.27, respectively. Additionally, PRFI demonstrated a lower false-positive rate than BAD-D (13.8% vs. 43.8%, p < 0.001). Notably, the relatively high false-positive rate of BAD-D observed in this study might be attributed to the smaller horizontal corneal diameter in tomographically suspected eyes. Conclusions: The PRFI proved to be a superior shape index compared to BAD-D in detecting any form of keratoconus, including subclinical cases, in Chinese refractive surgery candidates. This finding may be attributed to the relatively small corneas commonly observed in Asians.
Collapse
Affiliation(s)
- Yan Liu
- Department of Ophthalmology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; (Y.L.); (Y.Z.); (Y.W.); (R.D.)
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Yu Zhang
- Department of Ophthalmology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; (Y.L.); (Y.Z.); (Y.W.); (R.D.)
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Yuexin Wang
- Department of Ophthalmology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; (Y.L.); (Y.Z.); (Y.W.); (R.D.)
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Ruilan Dong
- Department of Ophthalmology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; (Y.L.); (Y.Z.); (Y.W.); (R.D.)
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Yueguo Chen
- Department of Ophthalmology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; (Y.L.); (Y.Z.); (Y.W.); (R.D.)
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
2
|
Vinciguerra R, Palladino S, Herber R, Romano MR, Vinciguerra P. The KERATO Biomechanics Study 1: A Comparative Evaluation Using Brillouin Microscopy and Dynamic Scheimpflug Imaging. J Refract Surg 2024; 40:e569-e578. [PMID: 39120013 DOI: 10.3928/1081597x-20240701-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
PURPOSE To assess the corneal biomechanical properties in normal individuals and patients with keratoconus using the Brillouin optical scanning system (Intelon Optics) (BOSS) and compare them with ultra-high-speed Scheimpflug imaging (Corvis ST; Oculus Optikgeräte GmbH). METHODS Sixty eyes from 60 patients (30 normal and 30 keratoconus) were included in this prospective, single-center, comparative, non-interventional study. Corneal biomechanics were evaluated using the Corvis ST and the BOSS. With the BOSS, each corneal image was acquired three times, measuring 10 locations within an 8-mm diameter. Parameters extracted included mean, maximum, and minimum Brillouin shift. These 10 points were also grouped into superior, central, and inferior regions. BOSS repeatability was assessed using the coefficient of repeatability and coefficient of variation. Furthermore, normal individuals and patients with keratoconus were compared using the Corvis ST and BOSS. RESULTS The BOSS exhibited good repeatability, with coefficient of repeatability ranging from 0.098 to 0.138 GHz for single points in normal individuals and 0.096 to 0.149 GHz for patients with keratoconus. Statistical analysis revealed significant differences between normal individuals and patients with keratoconus, indicating softer corneas in keratoconus, observed with both the Corvis ST and BOSS. Specifically, the BOSS showed significant differences in mean, inferior, and superior mean, maximum, and minimum Brillouin frequency shift (all P < .05), whereas the Corvis ST displayed highly significant differences in stiffness parameter at first applanation, stress strain index, deformation amplitude ratio, and inverse integrated radius (all P < .001). CONCLUSIONS Corneal biomechanical measurements proved highly repeatable and effectively demonstrated significant differences between normal individuals and patients with keratoconus using both the BOSS and the Corvis ST. [J Refract Surg. 2024;40(8):e569-e578.].
Collapse
|
3
|
Felter E, Khoramnia R, Friedrich M, Son HS, Auffarth GU, Augustin VA. Biomechanical changes following corneal crosslinking in keratoconus patients. Graefes Arch Clin Exp Ophthalmol 2024:10.1007/s00417-024-06549-z. [PMID: 38884654 DOI: 10.1007/s00417-024-06549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
PURPOSE To evaluate the biomechanical and tomographic outcomes of keratoconus patients up to four years after corneal crosslinking (CXL). METHODS In this longitudinal retrospective-prospective single-center case series, the preoperative tomographic and biomechanical results from 200 keratoconus eyes of 161 patients undergoing CXL were compared to follow-up examinations at three-months, six-months, one-year, two-years, three-years, and four-years after CXL. Primary outcomes included the Corvis Biomechanical Factor (CBiF) and five biomechanical response parameters obtained from the Corvis ST. Tomographically, the Belin-Ambrósio deviation index (BAD-D) and the maximal keratometry (Kmax) measured by the Pentacam were analyzed. Additionally, Corvis E-staging, the thinnest corneal thickness (TCT), and the best-corrected visual acuity (BCVA) were obtained. Primary outcomes were compared using a paired t-test. RESULTS The CBiF decreased significantly at the six-month (p < 0.001) and one-year (p < 0.001) follow-ups when compared to preoperative values. E-staging behaved accordingly to the CBiF. Within the two- to four-year follow-ups, the biomechanical outcomes showed no significant differences when compared to preoperative. Tomographically, the BAD-D increased significantly during the first year after CXL with a maximum at six-months (p < 0.001), while Kmax decreased significantly (p < 0.001) and continuously up to four years after CXL. The TCT was lower at all postoperative follow-up visits compared to preoperative, and the BCVA improved. CONCLUSION In the first year after CXL, there was a temporary progression in both the biomechanical CBiF and E-staging, as well as in the tomographic analysis. CXL contributes to the stabilization of both the tomographic and biomechanical properties of the cornea up to four years postoperatively.
Collapse
Affiliation(s)
- Emilia Felter
- David J. Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Heidelberg, INF 400, 69120, Germany
| | - Ramin Khoramnia
- David J. Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Heidelberg, INF 400, 69120, Germany
| | - Maximilian Friedrich
- David J. Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Heidelberg, INF 400, 69120, Germany
| | - Hyeck-Soo Son
- David J. Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Heidelberg, INF 400, 69120, Germany
| | - Gerd U Auffarth
- David J. Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Heidelberg, INF 400, 69120, Germany
| | - Victor A Augustin
- David J. Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Heidelberg, INF 400, 69120, Germany.
| |
Collapse
|
4
|
Huo Y, Chen X, Xie R, Li J, Wang Y. Longitudinal Analysis of Corneal Biomechanics of Suspect Keratoconus: A Prospective Case-Control Study. Bioengineering (Basel) 2024; 11:420. [PMID: 38790289 PMCID: PMC11118031 DOI: 10.3390/bioengineering11050420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND To evaluate the corneal biomechanics of stable keratoconus suspects (Stable-KCS) at 1-year follow-up and compare them with those of subclinical keratoconus (SKC). METHODS This prospective case-control study included the eyes of 144 patients. Biomechanical and tomographic parameters were recorded (Corvis ST and Pentacam). Patients without clinical signs of keratoconus in both eyes but suspicious tomography findings were included in the Stable-KCS group (n = 72). Longitudinal follow-up was used to evaluate Stable-KCS changes. Unilateral keratoconus contralateral eyes with suspicious tomography were included in the SKC group (n = 72). T-tests and non-parametric tests were used for comparison. Multivariate general linear models were used to adjust for confounding factors for further analysis. Receiver operating characteristic (ROC) curves were used to analyze the distinguishability. RESULTS The biomechanical and tomographic parameters of Stable-KCS showed no progression during the follow-up time (13.19 ± 2.41 months, p > 0.05). Fifteen biomechanical parameters and the Stress-Strain Index (SSI) differed between the two groups (p < 0.016). The A1 dArc length showed the strongest distinguishing ability (area under the ROC = 0.888) between Stable-KCS and SKC, with 90.28% sensitivity and 77.78% specificity at the cut-off value of -0.0175. CONCLUSIONS The A1 dArc length could distinguish between Stable-KCS and SKC, indicating the need to focus on changes in the A1 dArc length for keratoconus suspects during the follow-up period. Although both have abnormalities on tomography, the corneal biomechanics and SSI of Stable-KCS were stronger than those of SKC, which may explain the lack of progression of Stable-KCS.
Collapse
Affiliation(s)
- Yan Huo
- School of Medicine, Nankai University, Tianjin 300071, China; (Y.H.); (X.C.); (R.X.)
| | - Xuan Chen
- School of Medicine, Nankai University, Tianjin 300071, China; (Y.H.); (X.C.); (R.X.)
| | - Ruisi Xie
- School of Medicine, Nankai University, Tianjin 300071, China; (Y.H.); (X.C.); (R.X.)
| | - Jing Li
- School of Medicine, Northwest University, Xi’an 710199, China;
| | - Yan Wang
- School of Medicine, Nankai University, Tianjin 300071, China; (Y.H.); (X.C.); (R.X.)
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Nankai Eye Institute, Nankai University, Tianjin 300071, China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin 300020, China
| |
Collapse
|
5
|
Huo Y, Chen X, Khan GA, Wang Y. Corneal biomechanics in early diagnosis of keratoconus using artificial intelligence. Graefes Arch Clin Exp Ophthalmol 2024; 262:1337-1349. [PMID: 37943332 DOI: 10.1007/s00417-023-06307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Keratoconus is a blinding eye disease that affects activities of daily living; therefore, early diagnosis is crucial. Great efforts have been made toward an early diagnosis of keratoconus. Recent studies have shown that corneal biomechanics is associated with the occurrence and progression of keratoconus. Hence, detecting changes in corneal biomechanics may provide a novel strategy for early diagnosis. However, an early keratoconus diagnosis remains challenging due to the subtle and localized nature of its lesions. Artificial intelligence has been used to help address this problem. Herein, we reviewed the literature regarding three aspects of keratoconus (keratoconus, early keratoconus, and keratoconus grading) based on corneal biomechanical properties using artificial intelligence. Furthermore, we summarized the current research progress, limitations, and possible prospects.
Collapse
Affiliation(s)
- Yan Huo
- School of Medicine, Nankai University, Tianjin, China
| | - Xuan Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Gauhar Ali Khan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yan Wang
- School of Medicine, Nankai University, Tianjin, China.
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, 4 Gansu Road, He-ping District, Tianjin, 300020, China.
- Nankai Eye Institute, Nankai University, Tianjin, China.
| |
Collapse
|
6
|
Komninou MA, Seiler TG, Enzmann V. Corneal biomechanics and diagnostics: a review. Int Ophthalmol 2024; 44:132. [PMID: 38478103 PMCID: PMC10937779 DOI: 10.1007/s10792-024-03057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE Corneal biomechanics is an emerging field and the interest into physical and biological interrelations in the anterior part of the eye has significantly increased during the past years. There are many factors that determine corneal biomechanics such as hormonal fluctuations, hydration and environmental factors. Other factors that can affect the corneas are the age, the intraocular pressure and the central corneal thickness. The purpose of this review is to evaluate the factors affecting corneal biomechanics and the recent advancements in non-destructive, in vivo measurement techniques for early detection and improved management of corneal diseases. METHODS Until recently, corneal biomechanics could not be directly assessed in humans and were instead inferred from geometrical cornea analysis and ex vivo biomechanical testing. The current research has made strides in studying and creating non-destructive and contactless techniques to measure the biomechanical properties of the cornea in vivo. RESULTS Research has indicated that altered corneal biomechanics contribute to diseases such as keratoconus and glaucoma. The identification of pathological corneas through the new measurement techniques is imperative for preventing postoperative complications. CONCLUSIONS Identification of pathological corneas is crucial for the prevention of postoperative complications. Therefore, a better understanding of corneal biomechanics will lead to earlier diagnosis of ectatic disorders, improve current refractive surgeries and allow for a better postoperative treatment.
Collapse
Affiliation(s)
- Maria Angeliki Komninou
- Department of Ophthalmology, Bern University Hospital Inselspital, University of Bern, Bern, Switzerland
- Institute of Intensive Care Medicine, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Theo G Seiler
- Department of Ophthalmology, Bern University Hospital Inselspital, University of Bern, Bern, Switzerland
- Klinik Für Augenheilkunde, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
- Institut Für Refraktive Und Opthalmo-Chirurgie (IROC), Zurich, Switzerland
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital Inselspital, University of Bern, Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Huo Y, Chen X, Song J, Li J, Hou J, Jhanji V, Li S, Wu G, Tian C, Liu Y, Wang Y. Corneal Biomechanical Properties to Predict Prognosis of Abnormal Tomographic Corneas: A Prospective Cohort Study. Am J Ophthalmol 2024; 259:185-196. [PMID: 38211780 DOI: 10.1016/j.ajo.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
PURPOSE To analyze the corneal biomechanical properties in patients with abnormal corneal tomography (ACT) and predict their stability using the biomechanical stability index (BSI). DESIGN Prospective cohort study. METHODS Setting: Multicenter study. STUDY POPULATION This study included 385 eyes of 278 patients with stable ACT (n = 70), subclinical keratoconus (SKC, n = 65), keratoconus (n = 65), normal controls (NL, n = 142). Forty-three eyes with first-visit ACT were included in a separate cohort (follow-up ACT group). OBSERVATION PROCEDURE Tomographical and biomechanical parameters (Pentacam and Corvis ST) were recorded. MAIN OUTCOME MEASURES Nonparametric tests were used for comparison. Logistic regression was employed to introduce BSI to separate stable ACT and SKC accurately. An independent dataset of 43 first-visit ACT eyes was followed up for 1 year to validate BSI's accuracy and positive and negative predictive values (PPV, NPV). RESULTS The tomographical and biomechanical parameters in patients with Stable ACT remained stable over the follow-up period (12.73 ± 2.57 months, P > .05). Stable ACT had 12/14 biomechanical parameters different (P < .05) from SKC but not different from NL (P > .05). With a cut-off value of 0.585, BSI demonstrated the strongest ability to distinguish between stable ACT and SKC (area under the receiver operating characteristic curve = 0.991), with 93.85% sensitivity and 97.14% specificity. During the 1-year follow-up of 43 eyes (follow-up ACT group), 30 remained stable. The accuracy, PPV, and NPV of the BSI were 95.35%, 100%, and 93.75%, respectively. CONCLUSIONS Biomechanical properties of patients with stable abnormal tomography corneas were stronger than SKC and close to normal corneas, which may explain the reason for tomographic stability. The BSI may be useful for predicting disease progression in patients with ACT and the possible management of corneal cross-linking at the first visit.
Collapse
Affiliation(s)
- Yan Huo
- School of Medicine (Y.H., X.C., S.L., Y.L., Y.W.), Nankai University, Tianjin, China
| | - Xuan Chen
- School of Medicine (Y.H., X.C., S.L., Y.L., Y.W.), Nankai University, Tianjin, China
| | - Jiaxin Song
- Clinical College of Ophthalmology (J.S., G.W., C.T., Y.W.), Tianjin Medical University, Tianjin, China
| | - Jing Li
- Shanxi Eye Hospital (J.L.), Xi'an People's Hospital, Xi'an, China
| | - Jie Hou
- Jinan Mingshui Eye Hospital (J.H.), Ji'nan, Shandong, China
| | - Vishal Jhanji
- Department of Ophthalmology (V.J.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shuangcheng Li
- School of Medicine (Y.H., X.C., S.L., Y.L., Y.W.), Nankai University, Tianjin, China
| | - Guoxi Wu
- Clinical College of Ophthalmology (J.S., G.W., C.T., Y.W.), Tianjin Medical University, Tianjin, China
| | - Caixia Tian
- Clinical College of Ophthalmology (J.S., G.W., C.T., Y.W.), Tianjin Medical University, Tianjin, China
| | - Yutong Liu
- School of Medicine (Y.H., X.C., S.L., Y.L., Y.W.), Nankai University, Tianjin, China
| | - Yan Wang
- School of Medicine (Y.H., X.C., S.L., Y.L., Y.W.), Nankai University, Tianjin, China; Clinical College of Ophthalmology (J.S., G.W., C.T., Y.W.), Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science (Y.W.), Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, China; Nankai Eye Institute (Y.W.), Nankai University, Tianjin, China.
| |
Collapse
|
8
|
Lombardo G, Alunni-Fegatelli D, Serrao S, Mencucci R, Roszkowska AM, Bernava GM, Vestri A, Aleo D, Lombardo M. Accuracy of an Air-Puff Dynamic Tonometry Biomarker to Discriminate the Corneal Biomechanical Response in Patients With Keratoconus. Cornea 2024; 43:315-322. [PMID: 37964435 DOI: 10.1097/ico.0000000000003377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/30/2023] [Indexed: 11/16/2023]
Abstract
PURPOSE The aim of this study was to assess accuracy of the mean corneal stiffness ( kc , N/m) parameter to discriminate between patients with keratoconus and age-matched healthy subjects. METHODS Dynamic Scheimpflug imaging tonometry was performed with Corvis ST (Oculus Optikgeräte GmbH, Germany) in patients with keratoconus (n = 24; study group) and age-matched healthy subjects (n = 32; control). An image processing algorithm was developed to analyze the video sequence of the Corvis ST air-puff event and to determine the geometric and temporal parameters that correlated with the corneal tissue biomechanical properties. A modified 3-element viscoelastic model was used to derive the kc parameter, which represented the corneal tissue resistance to deformation under load. Receiver operating characteristic curves were used to assess the overall diagnostic performance for determining the area under the curve, sensitivity, and specificity of the kc in assessing the corneal tissue deformation to the Corvis ST air-puff event in keratoconus and control eyes. The Corvis Biomechanical Index ( CBI ) was analyzed for external validation. RESULTS The kc parameter was significantly different between keratoconus and controls ( P < 0.001), ranging from 24.9 ±3.0 to 34.2 ±3.5 N/m, respectively. It was highly correlated with CBI (r = -0.69; P < 0.001); however, the kc parameter had greater specificity (94%) than CBI (75%), whereas the 2 biomarkers had similar area under the curve (0.98 vs. 0.94) and sensitivity (96% vs. 92%) in predicting the occurrence of keratoconus. CONCLUSIONS The kc parameter extracted by video processing analysis of dynamic Scheimpflug tonometry data was highly accurate in discriminating patients with clinically manifest keratoconus compared with controls.
Collapse
Affiliation(s)
- Giuseppe Lombardo
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, Italy
- Vision Engineering Italy srl, Rome, Italy
| | - Danilo Alunni-Fegatelli
- Department of Public Health and infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | | | - Rita Mencucci
- SOD Oculistica, AOU Careggi, Università di Firenze, Firenze, Italy
| | | | | | - Annarita Vestri
- Department of Public Health and infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | | | - Marco Lombardo
- Vision Engineering Italy srl, Rome, Italy
- Studio Italiano di Oftalmologia, Rome, Italy
| |
Collapse
|
9
|
Cheng J, Yang L, Ye Y, He L, Chen S, Wang J. Mendelian Randomisation Analysis of Causal Association between Lifestyle, Health Factors, and Keratoconus. Bioengineering (Basel) 2024; 11:221. [PMID: 38534495 DOI: 10.3390/bioengineering11030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Keratoconus (KC), a leading cause of vision impairment, has an unclear aetiology. This study used Mendelian randomization (MR) to explore the causal links between various factors (smoking, asthma, Down syndrome, inflammatory bowel disease, atopic dermatitis, and serum 25-hydroxyvitamin D levels) and KC. A two-sample MR design, grounded in genome-wide association study (GWAS) summary statistics, was adopted using data from FinnGen, UK Biobank, and other GWAS-related articles. The inverse-variance weighted (IVW) method was employed, complemented by the Wald ratio method for factors with only one single-nucleotide polymorphism (SNP). Sensitivity and stability were assessed through Cochrane's Q test, the MR-Egger intercept test, MR-PRESSO outlier test, and the leave-one-out analysis. The IVW results for the ORA (Ocular Response Analyzer) biomechanical parameters indicated significant associations between tobacco smoking (CH: p < 0.001; CRF: p = 0.009) and inflammatory bowel disease (CH: p = 0.032; CRF: p = 0.001) and corneal biomechanics. The Wald ratio method showed tobacco smoking was associated with a lower risk of KC (p = 0.024). Conversely, asthma (p = 0.009), atopic dermatitis (p = 0.012), inflammatory bowel disease (p = 0.017), and serum 25-hydroxyvitamin D levels (p = 0.039) were associated with a higher risk of KC by IVW, and the same applied to Down syndrome (p = 0.004) using the Wald ratio. These results underscore the role of corneal biomechanics as potential mediators in KC risk, warranting further investigation using Corvis ST and Brillouin microscopy. The findings emphasise the importance of timely screening for specific populations in KC prevention and management.
Collapse
Affiliation(s)
- Jiaxuan Cheng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lanting Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yishan Ye
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lvfu He
- Department of Ophthalmology, Sichuan Mental Health Center, Mianyang 621054, China
| | - Shihao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Junjie Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Department of Ophthalmology, Sichuan Mental Health Center, Mianyang 621054, China
| |
Collapse
|
10
|
Liu B, Shang X, Tan X, Luo S, Fang X, Xie Z, Xiao X, He H, Gong L, Wu H, Lin Z. Clinical and Morphological in Vivo Confocal Microscopy Findings following a Modified Biphasic Higher Fluence Transepithelial Corneal Crosslinking. Curr Eye Res 2024; 49:119-130. [PMID: 37882774 DOI: 10.1080/02713683.2023.2276680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
Purpose: To compare the refractive efficacy and morphological changes in the cornea following a novel biphasic higher fluence transepithelial corneal crosslinking (BI-TE-CXL) and transepithelial corneal crosslinking (TE-CXL) in adults keratoconus.Methods: Patients with progressive keratoconus who required corneal crosslinking were assigned to the BI-TE-CXL group (32 eyes, phase 1: 7.2 J/cm2 for 5 min and 20 s of pulsed-light exposure, KXL, Glaukos-Avedro; phase 2: 3.6 J/cm2 for 6 min and 40 s of continuous light exposure at the front curvature apex with a 6 mm diameter light spot, UVX-2000, IROC) or the TE-CXL group (32 eyes, uniform 7.2 J/cm2 for 5 min and 20 s of pulsed-light exposure, KXL, Glaukos-Avedro). Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), corneal fluorescein staining (CFS), corneal topography, anterior segment optical coherence tomography (AS-OCT), and in vivo corneal confocal microscopy (IVCM) were performed 3, 6, 12 and 24 months after surgery.Results: The CFS scores in the BI-TE-CXL group were significantly higher than those in the TE-CXL group on the first two days after surgery (p < 0.001). The Kmax (at 12 and 24 months) and CDVA (logMAR) were significantly lower in the BI-TE-CXL group than those in the TE-CXL group (p < 0.05). The corneal demarcation line under AS-OCT was visible in 81.3% of patients in the BI-TE-CXL group and 15.6% in the TE-CXL group. The depth of the demarcation line under IVCM was significantly deeper in the BI-TE-CXL group (248.3 ± 25.0 μm) than that of the TE-CXL group (136.5 ± 15.6 μm) in the central cornea (p < 0.001). The cross-linked collagen structures in the central cornea were still present after 12 months in the BI-TE-CXL group. No significant difference in sub-basal nerve density between the two groups (p > 0.05).Conclusions: Following BI-TE-CXL, CDVA was significantly improved, accompanied by deeper demarcation line depth and persistent crosslinked structures in the central corneal stroma.
Collapse
Affiliation(s)
- Bin Liu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
- Fujian Key Laboratory of Ocular Surface & Corneal Diseases (affiliated Xiamen Eye Center of, Xiamen University), Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface & Corneal Diseases, Xiamen, Fujian, China
| | - Xumin Shang
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Ocular Surface & Corneal Diseases (affiliated Xiamen Eye Center of, Xiamen University), Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface & Corneal Diseases, Xiamen, Fujian, China
| | - Xiuxian Tan
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
- Fujian Key Laboratory of Ocular Surface & Corneal Diseases (affiliated Xiamen Eye Center of, Xiamen University), Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface & Corneal Diseases, Xiamen, Fujian, China
| | - Shunrong Luo
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Ocular Surface & Corneal Diseases (affiliated Xiamen Eye Center of, Xiamen University), Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface & Corneal Diseases, Xiamen, Fujian, China
| | - Xie Fang
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Ocular Surface & Corneal Diseases (affiliated Xiamen Eye Center of, Xiamen University), Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface & Corneal Diseases, Xiamen, Fujian, China
| | - Zhiwen Xie
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Ocular Surface & Corneal Diseases (affiliated Xiamen Eye Center of, Xiamen University), Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface & Corneal Diseases, Xiamen, Fujian, China
| | - Xianwen Xiao
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Ocular Surface & Corneal Diseases (affiliated Xiamen Eye Center of, Xiamen University), Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface & Corneal Diseases, Xiamen, Fujian, China
| | - Huan He
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Ocular Surface & Corneal Diseases (affiliated Xiamen Eye Center of, Xiamen University), Xiamen, Fujian, China
- Xiamen Research Center for Eye Diseases and Key Laboratory of Ophthalmology, Xiamen, Fujian, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and, Throat Hospital of Fudan University, Shanghai, China
| | - Huping Wu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
- Fujian Key Laboratory of Ocular Surface & Corneal Diseases (affiliated Xiamen Eye Center of, Xiamen University), Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface & Corneal Diseases, Xiamen, Fujian, China
| | - Zhirong Lin
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
- Fujian Key Laboratory of Ocular Surface & Corneal Diseases (affiliated Xiamen Eye Center of, Xiamen University), Xiamen, Fujian, China
- Xiamen Municipal Key Laboratory of Ocular Surface & Corneal Diseases, Xiamen, Fujian, China
- Xiamen Research Center for Eye Diseases and Key Laboratory of Ophthalmology, Xiamen, Fujian, China
| |
Collapse
|
11
|
Ren S, Yang K, Xu L, Fan Q, Gu Y, Pang C, Zhao D. Machine learning analysis with the comprehensive index of corneal tomographic and biomechanical parameters in detecting pediatric subclinical keratoconus. Front Bioeng Biotechnol 2023; 11:1273500. [PMID: 38125302 PMCID: PMC10730932 DOI: 10.3389/fbioe.2023.1273500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Background: Keratoconus (KC) occurs at puberty but diagnosis is focused on adults. The early diagnosis of pediatric KC can prevent its progression and improve the quality of life of patients. This study aimed to evaluate the ability of corneal tomographic and biomechanical variables through machine learning analysis to detect subclinical keratoconus (SKC) in a pediatric population. Methods: Fifty-two KC, 52 SKC, and 52 control pediatric eyes matched by age and gender were recruited in a case-control study. The corneal tomographic and biomechanical parameters were measured by professionals. A linear mixed-effects test was used to compare the differences among the three groups and a least significant difference analysis was used to conduct pairwise comparisons. The receiver operating characteristic (ROC) curve and the Delong test were used to evaluate diagnostic ability. Variables were used in a multivariate logistic regression in the machine learning analysis, using a stepwise variable selection to decrease overfitting, and comprehensive indices for detecting pediatric SKC eyes were produced in each step. Results: PE, BAD-D, and TBI had the highest area under the curve (AUC) values in identifying pediatric KC eyes, and the corresponding cutoff values were 12 μm, 2.48, and 0.6, respectively. For discriminating SKC eyes, the highest AUC (95% CI) was found in SP A1 with a value of 0.84 (0.765, 0.915), and BAD-D was the best parameter among the corneal tomographic parameters with an AUC (95% CI) value of 0.817 (0.729, 0.886). Three models were generated in the machine learning analysis, and Model 3 (y = 0.400*PE + 1.982* DA ratio max [2 mm]-0.072 * SP A1-3.245) had the highest AUC (95% CI) value, with 90.4% sensitivity and 76.9% specificity, and the cutoff value providing the best Youden index was 0.19. Conclusion: The criteria of parameters for diagnosing pediatric KC and SKC eyes were inconsistent with the adult population. Combined corneal tomographic and biomechanical parameters could enhance the early diagnosis of young patients and improve the inadequate representation of pediatric KC research.
Collapse
Affiliation(s)
| | - Kaili Yang
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, People’s Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
12
|
Peyman A, Sepahvand F, Pourazizi M, Noorshargh P, Forouhari A. Corneal biomechanics in normal and subclinical keratoconus eyes. BMC Ophthalmol 2023; 23:459. [PMID: 37968616 PMCID: PMC10647094 DOI: 10.1186/s12886-023-03215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The diagnosis of keratoconus, as the most prevalent corneal ectatic disorder, at the subclinical stage gained great attention due to the increased acceptance of refractive surgeries. This study aimed to assess the pattern of the corneal biomechanical properties derived from Corneal Visualization Scheimpflug Technology (Corvis ST) and evaluate the diagnostic value of these parameters in distinguishing subclinical keratoconus (SKC) from normal eyes. METHODS This prospective study was conducted on 73 SKC and 69 normal eyes. Subclinical keratoconus eyes were defined as corneas with no clinical evidence of keratoconus and suspicious topographic and tomographic features. Following a complete ophthalmic examination, topographic and tomographic corneal assessment via Pentacam HR, and corneal biomechanical evaluation utilizing Corvis ST were done. RESULTS Subclinical keratoconus eyes presented significantly higher Deformation Amplitude (DA) ratio, Tomographic Biomechanical Index (TBI), and Corvis Biomechanical Index (CBI) rates than the control group. Conversely, Ambrósio Relational Thickness to the Horizontal profile (ARTh), and Stiffness Parameter at the first Applanation (SPA1) showed significantly lower rates in SKC eyes. In diagnosing SKC from normal eyes, TBI (AUC: 0.858, Cut-off value: > 0.33, Youden index: 0.55), ARTh (AUC: 0.813, Cut-off value: ≤ 488.1, Youden index: 0.58), and CBI (AUC: 0.804, Cut-off value: > 0.47, Youden index: 0.49) appeared as good indicators. CONCLUSIONS TBI, CBI, and ARTh parameters could be valuable in distinguishing SKC eyes from normal ones.
Collapse
Affiliation(s)
- Alireza Peyman
- Isfahan Eye Research Center, Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Sepahvand
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Pourazizi
- Isfahan Eye Research Center, Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pegah Noorshargh
- Isfahan Eye Research Center, Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Forouhari
- Isfahan Eye Research Center, Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Li X, Luo S, Wang Z, Miao Y, Zhu M, Zheng X, Luo G, Bao F, Chen S, Wang J. Dynamic topography analysis of the cornea and its application to the diagnosis of keratoconus. Comput Biol Med 2023; 158:106800. [PMID: 36966554 DOI: 10.1016/j.compbiomed.2023.106800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
PROPOSE To establish a dynamic topography analysis method which simulates the dynamic biomechanical response of the cornea and reveals the variations of such response within the corneal surface, and thereafter to propose and clinically evaluate new parameters for the definite diagnosis of keratoconus. METHODS 58 normal (Normal) and 56 keratoconus (KC) subjects were retrospectively included. Personalized corneal air-puff model was established using corneal topography data by Pentacam for each subject, and the dynamic deformation under air-puff loading was simulated using finite element method, which then enabled calculations of corneal biomechanical parameters of the entire corneal surface along any meridian. Variations in these parameters across different meridians and between different groups were explored by two-way repeated measurement analysis of variance. New dynamic topography parameters were proposed as the range of the calculated biomechanical parameters within the entire corneal surface, and the AUC of ROC curve was used to compare the diagnostic efficiency of newly proposed and existing parameters. RESULTS Corneal biomechanical parameters measured in different meridians varied significantly which were more pronounced in KC group due to its irregularity in corneal morphology. Considering such between-meridian variations thus led to improved diagnostic efficiency of KC as presented by the proposed dynamic topography parameter rIR with an AUC of 0.992 (sensitivity: 91.1%, specificity: 100%), significantly better than the current topography and biomechanical parameters. CONCLUSIONS The diagnosis of keratoconus may be affected by the significant variations of corneal biomechanical parameters due to corneal morphology irregularity. By considering such variations, the current study established the dynamic topography analysis process which benefits from the high accuracy of (static) corneal topography measurement while improving its diagnosis capacity. The proposed dynamic topography parameters, especially the rIR parameter, showed comparable or better diagnostic efficiency for KC than existing topography and biomechanical parameters, which can be of great clinical significance for clinics without access to instrument for biomechanical evaluations.
Collapse
|