1
|
He S, Joseph S, Bulloch G, Jiang F, Kasturibai H, Kim R, Ravilla TD, Wang Y, Shi D, He M. Bridging the Camera Domain Gap With Image-to-Image Translation Improves Glaucoma Diagnosis. Transl Vis Sci Technol 2023; 12:20. [PMID: 38133514 PMCID: PMC10746931 DOI: 10.1167/tvst.12.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/15/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose The purpose of this study was to improve the automated diagnosis of glaucomatous optic neuropathy (GON), we propose a generative adversarial network (GAN) model that translates Optain images to Topcon images. Methods We trained the GAN model on 725 paired images from Topcon and Optain cameras and externally validated it using an additional 843 paired images collected from the Aravind Eye Hospital in India. An optic disc segmentation model was used to assess the disparities in disc parameters across cameras. The performance of the translated images was evaluated using root mean square error (RMSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), 95% limits of agreement (LOA), Pearson's correlations, and Cohen's Kappa coefficient. The evaluation compared the performance of the GON model on Topcon photographs as a reference to that of Optain photographs and GAN-translated photographs. Results The GAN model significantly reduced Optain false positive results for GON diagnosis, with RMSE, PSNR, and SSIM of GAN images being 0.067, 14.31, and 0.64, respectively, the mean difference of VCDR and cup-to-disc area ratio between Topcon and GAN images being 0.03, 95% LOA ranging from -0.09 to 0.15 and -0.05 to 0.10. Pearson correlation coefficients increased from 0.61 to 0.85 in VCDR and 0.70 to 0.89 in cup-to-disc area ratio, whereas Cohen's Kappa improved from 0.32 to 0.60 after GAN translation. Conclusions Image-to-image translation across cameras can be achieved by using GAN to solve the problem of disc overexposure in Optain cameras. Translational Relevance Our approach enhances the generalizability of deep learning diagnostic models, ensuring their performance on cameras that are outside of the original training data set.
Collapse
Affiliation(s)
- Shuang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Sanil Joseph
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
- Lions Aravind Institute of Community Ophthalmology, Aravind Eye Care System, Madurai, India
| | - Gabriella Bulloch
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Feng Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | | | - Ramasamy Kim
- Aravind Eye Hospital and Post Graduate Institute, Madurai, India
| | - Thulasiraj D. Ravilla
- Lions Aravind Institute of Community Ophthalmology, Aravind Eye Care System, Madurai, India
| | - Yueye Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Danli Shi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Aravind Eye Hospital and Post Graduate Institute, Madurai, India
| |
Collapse
|