1
|
Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y, Zhang Y. A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308915. [PMID: 38229552 DOI: 10.1002/adma.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Nanotechnology profoundly affects the advancement of medicine. Limitations in diagnosing and treating cancer and chronic diseases promote the growth of nanomedicine. However, there are very few analytical and descriptive studies regarding the trajectory of nanomedicine, key research powers, present research landscape, focal investigative points, and future outlooks. Herein, articles and reviews published in the Science Citation Index Expanded of Web of Science Core Collection from first January 2000 to 18th July 2023 are analyzed. Herein, a bibliometric visualization of publication trends, countries/regions, institutions, journals, research categories, themes, references, and keywords is produced and elaborated. Nanomedicine-related academic output is increasing since the COVID-19 pandemic, solidifying the uneven global distribution of research performance. While China leads in terms of publication quantity and has numerous highly productive institutions, the USA has advantages in academic impact, commercialization, and industrial value. Nanomedicine integrates with other disciplines, establishing interdisciplinary platforms, in which drug delivery and nanoparticles remain focal points. Current research focuses on integrating nanomedicine and cell ferroptosis induction in cancer immunotherapy. The keyword "burst testing" identifies promising research directions, including immunogenic cell death, chemodynamic therapy, tumor microenvironment, immunotherapy, and extracellular vesicles. The prospects, major challenges, and barriers to addressing these directions are discussed.
Collapse
Affiliation(s)
- Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Tong Xie
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Lan Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Yuzhou Xue
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling Peking University, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| |
Collapse
|
2
|
Umer A, Ghouri MD, Muyizere T, Aqib RM, Muhaymin A, Cai R, Chen C. Engineered Nano-Bio Interfaces for Stem Cell Therapy. PRECISION CHEMISTRY 2023; 1:341-356. [PMID: 37654807 PMCID: PMC10466455 DOI: 10.1021/prechem.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
Engineered nanomaterials (ENMs) with different topographies provide effective nano-bio interfaces for controlling the differentiation of stem cells. The interaction of stem cells with nanoscale topographies and chemical cues in their microenvironment at the nano-bio interface can guide their fate. The use of nanotopographical cues, in particular nanorods, nanopillars, nanogrooves, nanofibers, and nanopits, as well as biochemical forces mediated factors, including growth factors, cytokines, and extracellular matrix proteins, can significantly impact stem cell differentiation. These factors were seen as very effective in determining the proliferation and spreading of stem cells. The specific outgrowth of stem cells can be decided with size variation of topographic nanomaterial along with variation in matrix stiffness and surface structure like a special arrangement. The precision chemistry enabled controlled design, synthesis, and chemical composition of ENMs can regulate stem cell behaviors. The parameters of size such as aspect ratio, diameter, and pore size of nanotopographic structures are the main factors for specific termination of stem cells. Protein corona nanoparticles (NPs) have shown a powerful facet in stem cell therapy, where combining specific proteins could facilitate a certain stem cell differentiation and cellular proliferation. Nano-bio reactions implicate the interaction between biological entities and nanoparticles, which can be used to tailor the stem cells' culmination. The ion release can also be a parameter to enhance cellular proliferation and to commit the early differentiation of stem cells. Further research is needed to fully understand the mechanisms underlying the interactions between engineered nano-bio interfaces and stem cells and to develop optimized regenerative medicine and tissue engineering designs.
Collapse
Affiliation(s)
- Arsalan Umer
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Muhammad Daniyal Ghouri
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Theoneste Muyizere
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Raja Muhammad Aqib
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Abdul Muhaymin
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Rong Cai
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
- GBA
National Institute for Nanotechnology Innovation, Guangdong 5110700, China
| |
Collapse
|
3
|
Pilou M, Mavrofrydi O, Housiadas C, Eleftheriadis K, Papazafiri P. Computational modeling as part of alternative testing strategies in the respiratory and cardiovascular systems: Inhaled nanoparticle dose modeling based on representative aerosol measurements and corresponding toxicological analysis. Nanotoxicology 2013; 9 Suppl 1:106-15. [DOI: 10.3109/17435390.2013.861527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|