1
|
Lee YB, Suslick BA, de Jong D, Wilson GO, Moore JS, Sottos NR, Braun PV. A Self-Healing System for Polydicyclopentadiene Thermosets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309662. [PMID: 38087908 DOI: 10.1002/adma.202309662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/19/2023] [Indexed: 12/22/2023]
Abstract
Self-healing offers promise for addressing structural failures, increasing lifespan, and improving durability in polymeric materials. Implementing self-healing in thermoset polymers faces significant manufacturing challenges, especially due to the elevated temperature requirements of thermoset processing. To introduce self-healing into structural thermosets, the self-healing system must be thermally stable and compatible with the thermoset chemistry. This article demonstrates a self-healing microcapsule-based system stable to frontal polymerization (FP), a rapid and energy-efficient manufacturing process with a self-propagating exothermic reaction (≈200 °C). A thermally latent Grubbs-type complex bearing two N-heterocyclic carbene ligands addresses limitations in conventional G2-based self-healing approaches. Under FP's elevated temperatures, the catalyst remains dormant until activated by a Cu(I) co-reagent, ensuring efficient polymerization of the dicyclopentadiene (DCPD) upon damage to the polyDCPD matrix. The two-part microcapsule system consists of one capsule containing the thermally latent Grubbs-type catalyst dissolved in the solvent, and another capsule containing a Cu(I) coagent blended with liquid DCPD monomer. Using the same chemistry for both matrix fabrication and healing results in strong interfaces as demonstrated by lap-shear tests. In an optimized system, the self-healing system restores the mechanical properties of the tough polyDCPD thermoset. Self-healing efficiencies greater than 90% via tapered double cantilever beam tests are observed.
Collapse
Affiliation(s)
- Young Bum Lee
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Material Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benjamin A Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Derek de Jong
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Material Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Material Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul V Braun
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Material Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
2
|
Usmani Z, Sharma M, Tripathi M, Lukk T, Karpichev Y, Gathergood N, Singh BN, Thakur VK, Tabatabaei M, Gupta VK. Biobased natural deep eutectic system as versatile solvents: Structure, interaction and advanced applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163002. [PMID: 37003333 DOI: 10.1016/j.scitotenv.2023.163002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/01/2023]
Abstract
The increasing emphasis on the development of green replacements to traditional organic solvents and ionic liquids (ILs) can be attributed to the rising concerns over human health and detrimental impacts of conventional solvents towards the environment. A new generation of solvents inspired by nature and extracted from plant bioresources has evolved over the last few years, and are referred to as natural deep eutectic solvents (NADES). NADES are mixtures of natural constituents like sugars, polyalcohols, sugar-based alcohols, amino acids and organic acids. Interest in NADES has exponentially grown over the last eight years, which is evident from an upsurge in the number of research projects undertaken. NADES are highly biocompatible as they can be biosynthesized and metabolized by nearly all living organisms. These solvents pose several noteworthy advantages, such as easy synthesis, tuneable physico-chemical properties, low toxicity, high biodegradability, solute sustainability and stabilization and low melting point. Research on the applicability of NADES in diverse areas is gaining momentum, which includes as - media for chemical and enzymatic reactions; extraction media for essential oils; anti-inflammatory and antimicrobial agent; extraction of bioactive composites; as chromatographic media; preservatives for labile compounds and in drug synthesis. This review gives a complete overview of the properties, biodegradability and toxicity of NADES which we propose can assist in further knowledge generation on their significance in biological systems and usage in green and sustainable chemistry. Information on applications of NADES in biomedical, therapeutic and pharma-biotechnology fields is also highlighted in the current article along with the recent progress and future perspectives in novel applications of NADES.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India; Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 ATH, Belgium
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh 224001, India
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Nicholas Gathergood
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire LN6 7DL, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
3
|
Lu R, Hao W, Kong L, Zhao K, Bai H, Liu Z. A simple method for the synthesis of copper nanoparticles from metastable intermediates. RSC Adv 2023; 13:14361-14369. [PMID: 37179993 PMCID: PMC10171199 DOI: 10.1039/d3ra01082a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Copper nanoparticles have attracted a wide attention because of their low cost and high specific surface area. At present, the synthesis of copper nanoparticles has the problems of complicated process and environmentally unfriendly materials like hydrazine hydrate and sodium hypophosphite that would pollute water, harm human health and may even cause cancer. In this paper, a simple and low-cost two-step synthesis method was used to prepare highly stable and well-dispersed spherical copper nanoparticles in solution with a particle size of about 34 nm. The prepared spherical copper nanoparticles were kept in solution for one month without precipitation. Using non-toxic l-ascorbic acid as the reducing and secondary coating agent, polyvinylpyrrolidone (PVP) as the primary coating agent, and NaOH as the pH modulator, the metastable intermediate CuCl was prepared. Due to the characteristics of the metastable state, copper nanoparticles were rapidly prepared. Moreover, to improve the dispersibility and antioxidant, the PVP and l-ascorbic acid were used to coat the surface of copper nanoparticles. Finally, the mechanism of the two-step synthesis of copper nanoparticles was discussed. This mechanism mainly relies on the two-step dehydrogenation of l-ascorbic acid to obtain copper nanoparticles.
Collapse
Affiliation(s)
- Ruihan Lu
- Printing Electronics Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University 1 Dongxiang Road Xi'an 710129 China
| | - Wuchang Hao
- Xi'an Hongxing Electronic Paste Technology Co., Ltd 1099 Dingkunchi 3rd Road Xi'an 710199 China
| | - Long Kong
- Printing Electronics Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University 1 Dongxiang Road Xi'an 710129 China
| | - Keliang Zhao
- Flexible Electronics Center, Ningbo Institute of Northwestern Polytechnical University 218 Qingyi Road Ningbo 315048 China
| | - Hao Bai
- Flexible Electronics Center, Ningbo Institute of Northwestern Polytechnical University 218 Qingyi Road Ningbo 315048 China
| | - Zhenguo Liu
- Printing Electronics Center for Flexible Electronics and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University 1 Dongxiang Road Xi'an 710129 China
- Flexible Electronics Center, Ningbo Institute of Northwestern Polytechnical University 218 Qingyi Road Ningbo 315048 China
| |
Collapse
|
4
|
Długosz O. Natural Deep Eutectic Solvents in the Synthesis of Inorganic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:627. [PMID: 36676363 PMCID: PMC9862785 DOI: 10.3390/ma16020627] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Natural deep eutectic solvents (NDESs), as a new type of green solvent, are used in many fields, including industry in extraction processes, medicine, pharmaceuticals, metallurgy, electrodeposition, separations, gas capture, biocatalysis and nanotechnology. Mainly due to their properties, such as simple preparation, environmental friendliness, biocompatibility and multifunctionality, they are being used in various fields of industry. This review aims to provide insight into the applications of natural deep eutectic solvents, specifically in nanotechnology processes. It focuses on the description of NDES and how their physicochemical properties are used to obtain functional nanomaterials, including metals, metal oxides and salts. It highlights how the use of NDESs to obtain a wide range of inorganic nanoparticles enables the elimination of disadvantages of traditional methods of obtaining them, including reducing energy consumption and functionalising nanoparticles in situ. In conclusion, recent advances and future directions in the development and applications of NDESs in nanotechnology are discussed with the aim of identifying unexplained scientific questions that can be investigated in the future.
Collapse
Affiliation(s)
- Olga Długosz
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland
| |
Collapse
|
5
|
Hadj-Kali MK, Salleh MZM, Wazeer I, Alhadid A, Mulyono S. Separation of Benzene and Cyclohexane Using Eutectic Solvents with Aromatic Structure. Molecules 2022; 27:molecules27134041. [PMID: 35807287 PMCID: PMC9268653 DOI: 10.3390/molecules27134041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/05/2022] Open
Abstract
The separation of benzene and cyclohexane is a challenging process in the petrochemical industry, mainly because of their close boiling points. Extractive separation of the benzene-cyclohexane mixture has been shown to be feasible, but it is important to find solvents with good extractive performance. In this work, 23 eutectic solvents (ESs) containing aromatic components were screened using the predictive COSMO-RS and their respective performance was compared with other solvents. The screening results were validated with experimental work in which the liquid–liquid equilibria of the three preselected ESs were studied with benzene and cyclohexane at 298.5 K and 101.325 kPa, with benzene concentrations in the feed ranging from 10 to 60 wt%. The performance of the ESs studied was compared with organic solvents, ionic liquids, and other ESs reported in the literature. This work demonstrates the potential for improved extractive separation of the benzene-cyclohexane mixture by using ESs with aromatic moieties.
Collapse
Affiliation(s)
- Mohamed K. Hadj-Kali
- Chemical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia; (I.W.); (S.M.)
- Correspondence: (M.K.H.-K.); (M.Z.M.S.)
| | - M. Zulhaziman M. Salleh
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Correspondence: (M.K.H.-K.); (M.Z.M.S.)
| | - Irfan Wazeer
- Chemical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia; (I.W.); (S.M.)
| | - Ahmad Alhadid
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany;
| | - Sarwono Mulyono
- Chemical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia; (I.W.); (S.M.)
| |
Collapse
|
6
|
Gontrani L, Tagliatesta P, Donia DT, Bauer EM, Bonomo M, Carbone M. Recent Advances in the Synthesis of Inorganic Materials Using Environmentally Friendly Media. Molecules 2022; 27:2045. [PMID: 35408444 PMCID: PMC9000861 DOI: 10.3390/molecules27072045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
Deep Eutectic Solvents have gained a lot of attention in the last few years because of their vast applicability in a large number of technological processes, the simplicity of their preparation and their high biocompatibility and harmlessness. One of the fields where DES prove to be particularly valuable is the synthesis and modification of inorganic materials-in particular, nanoparticles. In this field, the inherent structural inhomogeneity of DES results in a marked templating effect, which has led to an increasing number of studies focusing on exploiting these new reaction media to prepare nanomaterials. This review aims to provide a summary of the numerous and most recent achievements made in this area, reporting several examples of the newest mixtures obtained by mixing molecules originating from natural feedstocks, as well as linking them to the more consolidated methods that use "classical" DES, such as reline.
Collapse
Affiliation(s)
- Lorenzo Gontrani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
- Department of Chemistry, University of Rome “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Pietro Tagliatesta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Domenica Tommasa Donia
- Department of Surgical Science, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Elvira Maria Bauer
- Italian National Research Council-Institute of Structure of Matter (CNR-ISM), Via Salaria km 29.3, 00015 Monterotondo, Italy;
| | - Matteo Bonomo
- Department of Chemistry, University of Rome “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy;
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| |
Collapse
|
7
|
Mudring AV, Hammond O. Ionic Liquids and Deep Eutectics as a Transformative Platform for the Synthesis of Nanomaterials. Chem Commun (Camb) 2022; 58:3865-3892. [DOI: 10.1039/d1cc06543b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids (ILs) are becoming a revolutionary synthesis medium for inorganic nanomaterials, permitting more efficient, safer and environmentally benign preparation of high quality products. A smart combination of ILs and...
Collapse
|
8
|
Deep eutectic systems: An overview of fundamental aspects, current understanding and drug delivery applications. Int J Pharm 2021; 610:121203. [PMID: 34673164 DOI: 10.1016/j.ijpharm.2021.121203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 01/03/2023]
Abstract
The deep eutectic system (DES) is a relatively new concept in the field of drug delivery science. DES is a class of eutectic mixtures comprised of two or more components, with a eutectic point far below than the melting temperature of the pure components. The strong hydrogen bonding interactions between DES constituents are responsible for significant lowering of melting point in DES. A significant number of molecules cannot reach from drug discovery phase to drug development phase because of poor biopharmaceutical attributes, such as solubility and permeability. DES can be a novel alternative to overcome these issues. In last few years DESs have been widely used in different pharmaceutical and chemical processes. However, comprehensive information regarding their drug delivery potential is not available. This review deals with fundamental aspects such as types, preparation, thermodynamics, toxicity, biodegradability and their applications in the field of drug delivery. Current challenges, future prospects and translational aspects of DES as drug delivery system have also been discussed.
Collapse
|
9
|
Ghenaatian HR, Shakourian-Fard M, Kamath G. Interaction of Cu n, Ag n and Au n (n = 1-4) nanoparticles with ChCl:Urea deep eutectic solvent. J Mol Graph Model 2021; 105:107866. [PMID: 33677361 DOI: 10.1016/j.jmgm.2021.107866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
In this study, the interaction of noble metal nanoparticles (Mn, M = Cu, Ag, and Au; n = 1-4) with ChCl:Urea deep eutectic solvent was investigated using density functional theory (DFT) method. We find that ChCl:Urea mostly interact with the Mn nanoparticles through [Cl]- anion ([Cl]-…Mn) and nonconventional H-bonds of C-H⋯Mn and N-H⋯Mn. NBO, QTAIM, NCI and EDA analyses show that [Cl]-…Mn interactions are stronger than the nonconventional H-bonds interactions. Our results indicate that the nature of [Cl]-…Mn interactions is electrostatic, while the nonconventional H-bonds of C-H⋯Mn and N-H⋯Mn are van der Waals in nature. The negative values of enthalpy (ΔH) and free energy (ΔG) for the ChCl:Urea…Mn complexes reveal that the formation of ChCl:Urea…Mn complexes is exothermic and proceeds spontaneously. The calculation of binding energy (ΔEb) of Mn nanoparticles with ChCl:Urea shows that the strength of interaction of Aun nanoparticles with ChCl:Urea is more favorable than Cun and Agn, following the order ChCl:Urea…Aun > ChCl:Urea…Cun > ChCl:Urea…Agn. Furthermore, the ΔEb, ΔH and ΔG values enhance with increasing nanoparticle size from n = 1 to n = 4, ChCl:Urea…M4> ChCl:Urea…M3> ChCl:Urea…M2> ChCl:Urea…M1 (M = Cu, Ag, and Au).
Collapse
Affiliation(s)
| | - Mehdi Shakourian-Fard
- Department of Chemical Engineering, Birjand University of Technology, Birjand, P.O. Box 97175/569, Iran
| | - Ganesh Kamath
- Dalzierfiver LLC, 3500 Carlfied St, EL Sobrante, CA, 94803, USA
| |
Collapse
|
10
|
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020; 121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 789] [Impact Index Per Article: 197.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.
Collapse
Affiliation(s)
- Benworth B Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Brian Chen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Derrick Poe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexandre Horton
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Brian W Doherty
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert F Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joshua R Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| |
Collapse
|
11
|
Häckl K, Li H, Aldous IM, Tsui T, Kunz W, Abbott AP, Warr GG, Atkin R. Potential Dependence of Surfactant Adsorption at the Graphite Electrode/Deep Eutectic Solvent Interface. J Phys Chem Lett 2019; 10:5331-5337. [PMID: 31430167 DOI: 10.1021/acs.jpclett.9b01968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Atomic force microscopy and cyclic voltammetry are used to probe how ionic surfactant adsorbed layer structure affects redox processes at deep eutectic solvent (DES)/graphite interfaces. Unlike its behavior in water, sodium dodecyl sulfate (SDS) in DESs only adsorbs as a complete layer of hemicylindrical hemimicelles far above its critical micelle concentration (CMC). Near the CMC it forms a tail-to-tail monolayer at open-circuit potential (OCP) and positive potentials, and it desorbs at negative potentials. In contrast, cetyltrimethylammonium bromide (CTAB) adsorbs as hemimicelles at low concentrations and remains adsorbed at both positive and negative potentials. The SDS horizontal monolayer has little overall effect on redox processes at the graphite interface, but hemimicelles form an effective and stable barrier. The stronger solvophobic interactions between the C16 versus C12 alkyl chains in the DES allow CTAB to self-assemble into a robust coating at low concentrations and illustrate how the structure of the DES/electrode interface and electrochemical response can be engineered by controlling surfactant structure.
Collapse
Affiliation(s)
- Katharina Häckl
- Institute of Physical and Theoretical Chemistry , University of Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Highway , Perth , WA 6009 , Australia
| | - Hua Li
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Highway , Perth , WA 6009 , Australia
- Centre for Microscopy, Characterisation and Analysis , The University of Western Australia , 35 Stirling Highway , Perth , WA 6009 , Australia
| | - Iain M Aldous
- Materials Centre, Department of Chemistry , University of Leicester , Leicester LE1 7RH , U.K
| | - Terrence Tsui
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Highway , Perth , WA 6009 , Australia
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry , University of Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany
| | - Andrew P Abbott
- Materials Centre, Department of Chemistry , University of Leicester , Leicester LE1 7RH , U.K
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute , The University of Sydney , Camperdown , NSW 2006 , Australia
| | - Rob Atkin
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Highway , Perth , WA 6009 , Australia
| |
Collapse
|
12
|
Lv S, Sui L, Zeng Y, Cheng Y, Liu C, Luo G. Synthesis of CuSCN particles in deep eutectic solvents and its application in the thermal decomposition of ammonium perchlorate. PARTICULATE SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1080/02726351.2015.1068897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Miao Z, Liang M, Xiao Z, Amir B, Li X, Zhi L. Cation-induced fast growth of ultrathin cuprous chloride nanoplatelets. CrystEngComm 2016. [DOI: 10.1039/c6ce00502k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Cardellini F, Tiecco M, Germani R, Cardinali G, Corte L, Roscini L, Spreti N. Novel zwitterionic deep eutectic solvents from trimethylglycine and carboxylic acids: characterization of their properties and their toxicity. RSC Adv 2014. [DOI: 10.1039/c4ra10628h] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev 2014; 114:11060-82. [PMID: 25300631 DOI: 10.1021/cr300162p] [Citation(s) in RCA: 2636] [Impact Index Per Article: 263.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Emma L Smith
- Department of Chemistry, School of Science and Technology, Nottingham Trent University , Nottingham NG11 8NS, United Kingdom
| | | | | |
Collapse
|
16
|
|