1
|
Zhao H, Dong F, Li Y, Ren X, Xia Z, Wang Y, Ma W. Inhibiting ATG5 mediated autophagy to regulate endoplasmic reticulum stress and CD4 + T lymphocyte differentiation: Mechanisms of acupuncture's effects on asthma. Biomed Pharmacother 2021; 142:112045. [PMID: 34426257 DOI: 10.1016/j.biopha.2021.112045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/18/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Asthma is characterized by airway hyperresponsiveness(AHR), inflammation and remodeling. Autophagy and endoplasmic reticulum stress(ERS) are dysregulated in asthma, and ATG5 has attracted wide attentions a representative gene of autophagy. Previous evidence shows that acupuncture may treat asthma by regulating the immune environment.However,the precise mechanism involved in acupuncture's effects on asthma is unclear. Thus, we investigated the inner-relationships of acupuncture and ATG5-mediated autophagy, ERS and CD4+ T lymphocyte differentiation in asthma. METHODS Ovalbumin (OVA)-sensitized and challenged ATG5+/- and ATG5-/-mice with asthma were treated by acupuncture at Dazhui(GV14),Feishu(BL13) and Zusanli(ST36),and sacrificed the next day.Then blood and bronchoalveolar lavage fluid (BALF)samples were collected to determine inflammatory cell counts and cytokine levels. Lung tissue samples were obtained for histological examination, and the spleen was harvested for flow cytometry. RESULTS Compared with the untreated group, acupuncture decreased BALF inflammatory cell counts and AHR in OVA-induced mice.Acupuncture decreased autophagy-related protein and mRNA (ATG5,Beclin-1,p62 and LC3B)amounts and ERS-related protein (p-PERK, p-IRE-1,Grp78, and ATF6)levels as well as autophagosome formation in lung tissue, concomitant with increased IFN-γ and decreased IL-4, IL-17 and TGF-β amounts in BALF.Consistently, the imbalance of CD4+ T lymphocyte subsets(Th1/Th2 and Treg/Th17) was also corrected by acupuncture.Meanwhile, AHR and inflammation were decreased in ATG5-/- mice compared with ATG+/-animals,without affecting the therapeutic effect of acupuncture. CONCLUSION Acupuncture reduces airway inflammation and AHR in asthma by inhibiting ATG5-mediated autophagy to regulate endoplasmic reticulum stress and CD4+T lymphocyte differentiation.
Collapse
Affiliation(s)
- Huanyi Zhao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Fang Dong
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuhui Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojie Ren
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | | | - Yong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wuhua Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
2
|
Zhou J, Zhang N, Zhang W, Lu C, Xu F. The YAP/HIF-1α/miR-182/EGR2 axis is implicated in asthma severity through the control of Th17 cell differentiation. Cell Biosci 2021; 11:84. [PMID: 33980319 PMCID: PMC8117288 DOI: 10.1186/s13578-021-00560-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Asthma is a heterogeneous chronic inflammatory disease of the airway, involving reversible airflow limitation and airway remodeling. T helper 17 (Th17) cells play an important role in the pathogenesis of allergic asthma. However, there is limited understanding of the signaling pathways controlling Th17 cell differentiation in asthma. The aim of this study was to investigate if the Yes-associated protein (YAP)/hypoxia inducible factor-1α (HIF-1α)/microRNA-182 (miR-182)/early growth response 2 (EGR2) axis is involved in mediating Th17 cell differentiation and disease severity in asthma. METHODS The study included 29 pediatric patients with asthma, 22 healthy volunteers, ovalbumin-induced murine asthma models, and mouse naive CD4+ T cells. The subpopulation of Th17 cells was examined by flow cytometry. The levels of interleukin-17A were determined by enzyme linked immunosorbent assay. Chromatin immunoprecipitation-quantitative polymerase chain reaction assays and dual-luciferase reporter gene assays were performed to examine interactions between HIF-1α and miR-182, and between miR-182 and EGR2. RESULTS YAP, HIF-1α, and miR-182 were upregulated but EGR2 was downregulated in human and mouse peripheral blood mononuclear cells from the asthma group. Abundant expression of YAP and HIF-1α promoted miR-182 expression and then inhibited EGR2, a target of miR-182, thus enhancing Th17 differentiation and deteriorating asthma and lipid metabolism dysfunction. In addition, in vivo overexpression of EGR2 countered the promoting effect of the YAP/HIF-1α/miR-182 axis on asthma and lipid metabolism dysfunction. CONCLUSION These results indicate that activation of the YAP/HIF-1α/miR-182/EGR2 axis may promote Th17 cell differentiation, exacerbate asthma development, and aggravate lipid metabolism dysfunction, thus suggesting a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Street, Donghu District, Nanchang, 330006, People's Republic of China
| | - Ning Zhang
- Department of Imaging, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Street, Donghu District, Nanchang, 330006, People's Republic of China
| | - Caiju Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Street, Donghu District, Nanchang, 330006, People's Republic of China
| | - Fei Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Street, Donghu District, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
3
|
The Dichotomous Nature of AZ5104 (an EGFR Inhibitor) Towards RORγ and RORγT. Int J Mol Sci 2019; 20:ijms20225780. [PMID: 31744223 PMCID: PMC6887705 DOI: 10.3390/ijms20225780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
The RORC (RAR related orphan receptor C) gene produces two isoforms by alternative promoter usage: RORγ (nuclear receptor ROR-gamma isoform 1) and RORγT (nuclear receptor ROR-gamma isoform 1). Both proteins have distinct tissue distributions and are involved in several physiological processes, including glucose/lipid metabolism and the development of Th17 lymphocytes. Previously, we developed a stably transfected reporter cell line and used it to screen a library of kinase inhibitors. We found that AZ5104 acts as an RORγ agonist at low micromolar concentrations. Molecular docking analysis showed that this compound occupies the ligand binding domain of the receptor with a significant docking score. However, analysis of the biological activity of this compound in Th17 cells revealed that it downregulates RORγT expression and Th17-related cytokine production via inhibition of SRC-ERK-STAT3 (SRC proto-oncogene - extracellular regulated MAP kinase - signal transducer and activator of transcription 3). We thus identified a compound acting as an agonist of RORγ that, due to the inhibition of downstream elements of EGFR (epidermal growth factor receptor) signaling, exerts different biological activity towards a Th17-specific isoform. Additionally, our results may be relevant in the future for the design of treatments targeting signaling pathways that inhibit Th17-related inflammation in certain autoimmune disorders.
Collapse
|
4
|
Bulek K, Chen X, Parron V, Sundaram A, Herjan T, Ouyang S, Liu C, Majors A, Zepp J, Gao J, Dongre A, Bodaszewska-Lubas M, Echard A, Aronica M, Carman J, Garantziotis S, Sheppard D, Li X. IL-17A Recruits Rab35 to IL-17R to Mediate PKCα-Dependent Stress Fiber Formation and Airway Smooth Muscle Contractility. THE JOURNAL OF IMMUNOLOGY 2019; 202:1540-1548. [PMID: 30683702 DOI: 10.4049/jimmunol.1801025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
IL-17A is a critical proinflammatory cytokine for the pathogenesis of asthma including neutrophilic pulmonary inflammation and airway hyperresponsiveness. In this study, by cell type-specific deletion of IL-17R and adaptor Act1, we demonstrated that IL-17R/Act1 exerts a direct impact on the contraction of airway smooth muscle cells (ASMCs). Mechanistically, IL-17A induced the recruitment of Rab35 (a small monomeric GTPase) and DennD1C (guanine nucleotide exchange factor [GEF]) to the IL-17R/Act1 complex in ASMCs, resulting in activation of Rab35. Rab35 knockdown showed that IL-17A-induced Rab35 activation was essential for protein kinase Cα (PKCα) activation and phosphorylation of fascin at Ser39 in ASMCs, allowing F-actin to interact with myosin to form stress fibers and enhance the contraction induced by methacholine. PKCα inhibitor or Rab35 knockdown indeed substantially reduced IL-17A-induced stress fiber formation in ASMCs and attenuated IL-17A-enhanced, methacholine-induced contraction of airway smooth muscle. Taken together, these data indicate that IL-17A promotes airway smooth muscle contraction via direct recruitment of Rab35 to IL-17R, followed by PKCα activation and stress fiber formation.
Collapse
Affiliation(s)
- Katarzyna Bulek
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195; .,Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Vandy Parron
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Aparna Sundaram
- Lung Biology Center, University of California San Francisco, San Francisco, CA 94143
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195.,Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Suidong Ouyang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Caini Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Alana Majors
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Jarod Zepp
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ji Gao
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543; and
| | - Ashok Dongre
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543; and
| | - Malgorzata Bodaszewska-Lubas
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Pasteur Institute, 75015 Paris, France
| | - Mark Aronica
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Julie Carman
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543; and
| | - Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Dean Sheppard
- Lung Biology Center, University of California San Francisco, San Francisco, CA 94143
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195;
| |
Collapse
|
5
|
Quan-San Z, Xiaohong X, Ying L, Zhaojia S. Role of Th17-cell related cytokines in geriatric asthma. J Int Med Res 2018; 47:580-590. [PMID: 30304965 PMCID: PMC6381488 DOI: 10.1177/0300060518803828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the pathogenesis of geriatric asthma through immunoglobulin E (IgE), interleukin-17A (IL-17A), IL-17F, and glucocorticoid receptor-β (GR-β) expression. METHODS We studied 51 geriatric male patients with asthma and 50 young male patients with asthma. We also included 21 normal geriatric males and 21 normal young males. All geriatric and young patients were divided into groups according to pulmonary function. Levels of cytokines, such as IgE, IL-17A, IL-17F, and GR-β, were measured. Pulmonary function was assessed. The results from patients were compared with those from the 42 healthy subjects. RESULTS Serum IgE, IL-17A, IL-17F, and GR-β levels in geriatric patients with moderate or severe asthma were significantly higher than those in young patients with moderate asthma and in the normal population. Geriatric patients with asthma had higher asthma control test scores than did young patients with asthma. CONCLUSION Hormone resistance in geriatric male patients with asthma is more serious than that in young male patients with asthma. Airway inflammation and airway remodeling in geriatric male patients with asthma may be more serious than those in young male patients with asthma, even when there is similar pulmonary function.
Collapse
Affiliation(s)
- Zhang Quan-San
- Qingdao Municipal Hospital Group Emergency Department, Qingdao, China
| | - Xu Xiaohong
- Qingdao Municipal Hospital Group Emergency Department, Qingdao, China
| | - Li Ying
- Qingdao Municipal Hospital Group Emergency Department, Qingdao, China
| | - Sun Zhaojia
- Qingdao Municipal Hospital Group Emergency Department, Qingdao, China
| |
Collapse
|
7
|
Neveu WA, Allard JL, Raymond DM, Bourassa LM, Burns SM, Bunn JY, Irvin CG, Kaminsky DA, Rincon M. Elevation of IL-6 in the allergic asthmatic airway is independent of inflammation but associates with loss of central airway function. Respir Res 2010; 11:28. [PMID: 20205953 PMCID: PMC2842243 DOI: 10.1186/1465-9921-11-28] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 03/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Asthma is a chronic inflammatory disease of the airway that is characterized by a Th2-type of immune response with increasing evidence for involvement of Th17 cells. The role of IL-6 in promoting effector T cell subsets suggest that IL-6 may play a functional role in asthma. Classically IL-6 has been viewed as an inflammatory marker, along with TNFα and IL-1β, rather than as regulatory cytokine. Objective To investigate the potential relationship between IL-6 and other proinflammatory cytokines, Th2/Th17 cytokines and lung function in allergic asthma, and thus evaluate the potential role of IL-6 in this disease. Methods Cytokine levels in induced sputum and lung function were measured in 16 healthy control and 18 mild-moderate allergic asthmatic subjects. Results The levels of the proinflammatory biomarkers TNFα and IL-1β were not different between the control and asthmatic group. In contrast, IL-6 levels were specifically elevated in asthmatic subjects compared with healthy controls (p < 0.01). Hierarchical regression analysis in the total study cohort indicates that the relationship between asthma and lung function could be mediated by IL-6. Among Th2 cytokines only IL-13 (p < 0.05) was also elevated in the asthmatic group, and positively correlated with IL-6 levels (rS = 0.53, p < 0.05). Conclusions In mild-moderate asthma, IL-6 dissociates from other proinflammatory biomarkers, but correlates with IL-13 levels. Furthermore, IL-6 may contribute to impaired lung function in allergic asthma.
Collapse
Affiliation(s)
- Wendy A Neveu
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|