1
|
Sadeghi Shermeh A, Royzman D, Kuhnt C, Draßner C, Stich L, Steinkasserer A, Knippertz I, Wild AB. Differential Modulation of Dendritic Cell Biology by Endogenous and Exogenous Aryl Hydrocarbon Receptor Ligands. Int J Mol Sci 2023; 24:ijms24097801. [PMID: 37175508 PMCID: PMC10177790 DOI: 10.3390/ijms24097801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a decisive regulatory ligand-dependent transcription factor. It binds highly diverse ligands, which can be categorized as either endogenous or exogenous. Ligand binding activates AhR, which can adjust inflammatory responses by modulating immune cells such as dendritic cells (DCs). However, how different AhR ligand classes impact the phenotype and function of human monocyte-derived DCs (hMoDCs) has not been extensively studied in a comparative manner. We, therefore, tested the effect of the representative compounds Benzo(a)pyrene (BP), 6-formylindolo[3,2-b]carbazole (FICZ), and Indoxyl 3-sulfate (I3S) on DC biology. Thereby, we reveal that BP significantly induces a tolerogenic response in lipopolysaccharide-matured DCs, which is not apparent to the same extent when using FICZ or I3S. While all three ligand classes activate AhR-dependent pathways, BP especially induces the expression of negative immune regulators, and subsequently strongly subverts the T cell stimulatory capacity of DCs. Using the CRISPR/Cas9 strategy we also prove that the regulatory effect of BP is strictly AhR-dependent. These findings imply that AhR ligands contribute differently to DC responses and incite further studies to uncover the mechanisms and molecules which are involved in the induction of different phenotypes and functions in DCs upon AhR activation.
Collapse
Affiliation(s)
- Atefeh Sadeghi Shermeh
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christina Draßner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Andreas B Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
2
|
Rannug A. 6-Formylindolo[3,2-b]carbazole, a Potent Ligand for the Aryl Hydrocarbon Receptor Produced Both Endogenously and by Microorganisms, can Either Promote or Restrain Inflammatory Responses. FRONTIERS IN TOXICOLOGY 2022; 4:775010. [PMID: 35295226 PMCID: PMC8915874 DOI: 10.3389/ftox.2022.775010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) binds major physiological modifiers of the immune system. The endogenous 6-formylindolo[3,2-b]carbazole (FICZ), which binds with higher affinity than any other compound yet tested, including TCDD, plays a well-documented role in maintaining the homeostasis of the intestines and skin. The effects of transient activation of AHR by FICZ differ from those associated with continuous stimulation and, depending on the dose, include either differentiation into T helper 17 cells that express proinflammatory cytokines or into regulatory T cells or macrophages with anti-inflammatory properties. Moreover, in experimental models of human diseases high doses stimulate the production of immunosuppressive cytokines and suppress pathogenic autoimmunity. In our earlier studies we characterized the formation of FICZ from tryptophan via the precursor molecules indole-3-pyruvate and indole-3-acetaldehyde. In the gut formation of these precursor molecules is catalyzed by microbial aromatic-amino-acid transaminase ArAT. Interestingly, tryptophan can also be converted into indole-3-pyruvate by the amino-acid catabolizing enzyme interleukin-4 induced gene 1 (IL4I1), which is secreted by host immune cells. By thus generating derivatives of tryptophan that activate AHR, IL4I1 may have a role to play in anti-inflammatory responses, as well as in a tumor escape mechanism that reduces survival in cancer patients. The realization that FICZ can be produced from tryptophan by sunlight, by enzymes expressed in our cells (IL4I1), and by microorganisms as well makes it highly likely that this compound is ubiquitous in humans. A diurnal oscillation in the level of FICZ that depends on the production by the fluctuating number of microbes might influence not only intestinal and dermal immunity locally, but also systemic immunity.
Collapse
|
3
|
Sabuz Vidal O, Deepika D, Schuhmacher M, Kumar V. EDC-induced mechanisms of immunotoxicity: a systematic review. Crit Rev Toxicol 2022; 51:634-652. [PMID: 35015608 DOI: 10.1080/10408444.2021.2009438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) refer to a group of chemicals that cause adverse effects in human health, impairing hormone production and regulation, resulting in alteration of homeostasis, reproductive, and developmental, and immune system impairments. The immunotoxicity of EDCs involves many mechanisms altering gene expression that depend on the activation of nuclear receptors such as the aryl hydrocarbon receptor (AHR), the estrogen receptor (ER), and the peroxisome proliferator-activated receptor (PPAR), which also results in skin and intestinal disorders, microbiota alterations and inflammatory diseases. This systematic review aims to review different mechanisms of immunotoxicity and immunomodulation of T cells, focusing on T regulatory (Treg) and Th17 subsets, B cells, and dendritic cells (DCs) caused by specific EDCs such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), bisphenols (BPs) and polyfluoroalkyl substances (PFASs). To achieve this objective, a systematic study was conducted searching various databases including PubMed and Scopus to find in-vitro, in-vivo, and biomonitoring studies that examine EDC-dependent mechanisms of immunotoxicity. While doing the systematic review, we found species- and cell-specific outcomes and a translational gap between in-vitro and in-vivo experiments. Finally, an adverse outcome pathway (AOP) framework is proposed, which explains mechanistically toxicity endpoints emerging from different EDCs having similar key events and can help to improve our understanding of EDCs mechanisms of immunotoxicity. In conclusion, this review provides insights into the mechanisms of immunotoxicity mediated by EDCs and will help to improve human health risk assessment.
Collapse
Affiliation(s)
- Oscar Sabuz Vidal
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Deepika Deepika
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain.,IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
4
|
Abdulla OA, Neamah W, Sultan M, Chatterjee S, Singh N, Nagarkatti M, Nagarkatti P. AhR Ligands Differentially Regulate miRNA-132 Which Targets HMGB1 and to Control the Differentiation of Tregs and Th-17 Cells During Delayed-Type Hypersensitivity Response. Front Immunol 2021; 12:635903. [PMID: 33679792 PMCID: PMC7933657 DOI: 10.3389/fimmu.2021.635903] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR), is a transcription factor and an environmental sensor that has been shown to regulate T cell differentiation. Interestingly, AhR ligands exert varying effects from suppression to exacerbation of inflammation through induction of Tregs and Th-17 cells, respectively. In the current study, we investigated whether the differential effects of AhR ligands on T cell differentiation are mediated by miRNA during delayed-type hypersensitivity (DTH) reaction against methylated Bovine Serum Albumin (mBSA). Treatment of C57BL/6 mice with TCDD attenuated mBSA-mediated DTH response, induced Tregs, decreased Th-17 cells, and caused upregulation of miRNA-132. TCDD caused an increase in several Treg subsets including inducible peripheral, natural thymic, and Th3 cells. Also, TCDD increased TGF-β and Foxp3 expression. In contrast, treating mice with FICZ exacerbated the DTH response, induced inflammatory Th17 cells, induced IL-17, and RORγ. Analysis of miRNA profiles from draining lymph nodes showed that miR-132 was upregulated in the TCDD group and downregulated in the FICZ group. Transfection studies revealed that miRNA-132 targeted High Mobility Group Box 1 (HMGB1). Downregulation of HMGB1 caused an increase in FoxP3+ Treg differentiation and suppression of Th-17 cells while upregulation of HMGB1 caused opposite effects. Moreover, TCDD was less effective in suppressing DTH response and induction of Tregs in mice that were deficient in miR-132. In summary, this study demonstrates that TCDD and FICZ have divergent effects on DTH response and T cell differentiation, which is mediated through, at least in part, regulation of miRNA-132 that targets HMGB1.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/agonists
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carbazoles/toxicity
- Cell Differentiation/drug effects
- Cells, Cultured
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- HMGB1 Protein/genetics
- HMGB1 Protein/metabolism
- Hypersensitivity, Delayed/genetics
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/metabolism
- Hypersensitivity, Delayed/prevention & control
- Ligands
- Mice, Inbred C57BL
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Phenotype
- Polychlorinated Dibenzodioxins/toxicity
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Mice
Collapse
Affiliation(s)
- Osama A. Abdulla
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Wurood Neamah
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Muthanna Sultan
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
5
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
6
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
7
|
Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chemistry and Properties of Indolocarbazoles. Chem Rev 2018; 118:9058-9128. [PMID: 30191712 DOI: 10.1021/acs.chemrev.8b00186] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.
Collapse
Affiliation(s)
- Tomasz Janosik
- Research Institutes of Sweden , Bioscience and Materials, RISE Surface, Process and Formulation , SE-151 36 Södertälje , Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | | | - Johnny Slätt
- Department of Chemistry, Applied Physical Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Jan Bergman
- Karolinska Institutet , Department of Biosciences and Nutrition , SE-141 83 Huddinge , Sweden
| |
Collapse
|
8
|
Esser C, Haarmann-Stemmann T, Hochrath K, Schikowski T, Krutmann J. AHR and the issue of immunotoxicity. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Riella LV, Bagley J, Iacomini J, Alegre ML. Impact of environmental factors on alloimmunity and transplant fate. J Clin Invest 2017; 127:2482-2491. [PMID: 28481225 DOI: 10.1172/jci90596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although gene-environment interactions have been investigated for many years to understand people's susceptibility to autoimmune diseases or cancer, a role for environmental factors in modulating alloimmune responses and transplant outcomes is only now beginning to emerge. New data suggest that diet, hyperlipidemia, pollutants, commensal microbes, and pathogenic infections can all affect T cell activation, differentiation, and the kinetics of graft rejection. These observations reveal opportunities for novel therapeutic interventions to improve graft outcomes as well as for noninvasive biomarker discovery to predict or diagnose graft deterioration before it becomes irreversible. In this Review, we will focus on the impact of these environmental factors on immune function and, when known, on alloimmune function, as well as on transplant fate.
Collapse
Affiliation(s)
- Leonardo V Riella
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jessamyn Bagley
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, Massachusetts, USA
| | - John Iacomini
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, Massachusetts, USA
| | | |
Collapse
|
10
|
Julliard W, Fechner JH, Owens L, O'Driscoll CA, Zhou L, Sullivan JA, Frydrych L, Mueller A, Mezrich JD. Modeling the Effect of the Aryl Hydrocarbon Receptor on Transplant Immunity. Transplant Direct 2017; 3:e157. [PMID: 28573192 PMCID: PMC5441988 DOI: 10.1097/txd.0000000000000666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/28/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Exposure to pollutants through inhalation is a risk factor for lung diseases including cancer, asthma, and lung transplant rejection, but knowledge of the effects of inhaled pollutants on pathologies outside of the lung is limited. METHODS Using the minor-mismatched model of male C57BL/6J (B6) to female B6 skin grafts, recipient mice were treated with an inhaled urban dust particle sample every 3 days before and after grafting. Graft survival time was determined, and analysis of the resulting immune response was performed at time before rejection. RESULTS Significant prolongation of male skin grafts occurred in recipient female mice treated with urban dust particles compared with controls and was found to be dependent on aryl hydrocarbon receptor (AHR) expression in the recipient mouse. T cell responses to the male histocompatibility antigen (H-Y) Dby were not altered by exposure to pollutants. A reduction in the frequency of IFNγ-producing CD4 T cells infiltrating the graft on day 7 posttransplant was observed. Flow cytometry analysis revealed that AHR expression is upregulated in IFNγ-producing CD4 T cells during immune responses in vitro and in vivo. CONCLUSIONS Surprisingly, inhalation of a pollutant standard was found to prolong graft survival in a minor-mismatched skin graft model in an AHR-dependent manner. One possible mechanism may be an effect on IFNγ-producing CD4 T cells responding to donor antigen. The increased expression of AHR in this CD4 T cell subset suggests that AHR ligands within the particulate matter may be directly affecting the type 1 T helper cell response in this model.
Collapse
Affiliation(s)
- Walker Julliard
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - John H Fechner
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Leah Owens
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Chelsea A O'Driscoll
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ling Zhou
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jeremy A Sullivan
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Lynn Frydrych
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Amanda Mueller
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Joshua D Mezrich
- Division of Transplant Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
11
|
Ehrlich AK, Kerkvliet NI. Is chronic AhR activation by rapidly metabolized ligands safe for the treatment of immune-mediated diseases? CURRENT OPINION IN TOXICOLOGY 2017; 2:72-78. [PMID: 28944315 DOI: 10.1016/j.cotox.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is a long standing perception that AhR ligands are automatically disqualified from pharmaceutical development due to their induction of Cyp1a1 as well as their potential for causing "dioxin-like" toxicities. However, recent discoveries of new AhR ligands with potential therapeutic applications have been reported, inviting reconsideration of this policy. One area of exploration is focused on the activation of AhR to promote the generation of regulatory T cells, which control the intensity and duration of immune responses. Rapidly metabolized AhR ligands (RMAhRLs), which do not bioaccumulate in the same manner as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) have been discovered that induce Tregs and display impressive therapeutic efficacy in a broad range of preclinical models of immune-mediated diseases. Given the promise of these RMAhRLs, is the bias against AhR activators still valid? Can RMAhRLs be given chronically to maintain therapeutic levels of AhR activation without producing the same toxicity profile as dioxin-like compounds? Based on our review of the data, there is little evidence to support the indiscriminate exclusion of AhR activators/Cyp1a1 inducers from early drug developmental pipelines. We also found no evidence that short-term treatment with RMAhRLs produce "dioxin-like toxicity" and, in fact, were well tolerated. However, safety testing of individual RMAhRLs under therapeutic conditions, as performed with all promising new drugs, will be needed to reveal whether or not chronic activation of AhR leads to unacceptable adverse outcomes.
Collapse
Affiliation(s)
- Allison K Ehrlich
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, United States
| | - Nancy I Kerkvliet
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, United States
| |
Collapse
|
12
|
Gargaro M, Pirro M, Romani R, Zelante T, Fallarino F. Aryl Hydrocarbon Receptor-Dependent Pathways in Immune Regulation. Am J Transplant 2016; 16:2270-6. [PMID: 26751261 DOI: 10.1111/ajt.13716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 01/25/2023]
Abstract
The idea of possible involvement of the aryl hydrocarbon receptor (AhR) in transplant tolerance can be traced back >30 years, when very low doses of dioxin-the most potent AhR ligand-were found to markedly reduce the generation of cytotoxic T lymphocytes in response to alloantigen challenge in vivo. AhR is a ligand-activated transcription factor that is activated by dioxins and other environmental pollutants. We now know that AhR can bind a broad variety of activating ligands that are disparate in nature, including endogenous molecules and those formed in the gut from food and bacterial products. Consequently, in addition to its classical role as a toxicological signal mediator, AhR is emerging as a transcription factor involved in the regulation of both innate and adaptive immune responses in various immune cell types, including lymphocytes and antigen-presenting cells (APCs). Allograft rejection is mostly a T cell-mediated alloimmune response initiated by the recognition of alloantigens presented by donor and recipient APCs to recipient CD4(+) and CD8(+) T cells. Based on those findings, AhR may function as a critical sensor of outside and inside environments, leading to changes in the immune system that may have relevance in transplantation.
Collapse
Affiliation(s)
- M Gargaro
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - M Pirro
- Department of Medicine, Perugia, Italy
| | - R Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - T Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - F Fallarino
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Julliard W, Owens LA, O'Driscoll CA, Fechner JH, Mezrich JD. Environmental Exposures-The Missing Link in Immune Responses After Transplantation. Am J Transplant 2016; 16:1358-64. [PMID: 26696401 PMCID: PMC4844852 DOI: 10.1111/ajt.13660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/25/2023]
Abstract
In transplantation, immunosuppression has been directed at controlling acute responses, but treatment of chronic rejection has been ineffective. It is possible that factors that have previously been unaccounted for, such as exposure to inhaled pollution, ultraviolet light, or loss of the normal equilibrium between the gut immune system and the outside environment may be responsible for shifting immune responses to an effector/inflammatory phenotype, which leads to loss of self-tolerance and graft acceptance, and a shift towards autoimmunity and chronic rejection. Cells of the immune system are in a constant balance of effector response, regulation, and quiescence. Endogenous and exogenous signals can shift this balance through the aryl hydrocarbon receptor, which serves as a thermostat to modulate the response one way or the other, both at mucosal surfaces of interface organs to the outside environment, and in the internal milieu. Better understanding of this balance will identify a target for maintenance of self-tolerance and continued graft acceptance in patients who have achieved a "steady state" after transplantation.
Collapse
Affiliation(s)
- W Julliard
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - L A Owens
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - C A O'Driscoll
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - J H Fechner
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - J D Mezrich
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
14
|
Esser C, Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev 2015; 67:259-79. [PMID: 25657351 DOI: 10.1124/pr.114.009001] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an evolutionarily old transcription factor belonging to the Per-ARNT-Sim-basic helix-loop-helix protein family. AhR translocates into the nucleus upon binding of various small molecules into the pocket of its single-ligand binding domain. AhR binding to both xenobiotic and endogenous ligands results in highly cell-specific transcriptome changes and in changes in cellular functions. We discuss here the role of AhR for immune cells of the barrier organs: skin, gut, and lung. Both adaptive and innate immune cells require AhR signaling at critical checkpoints. We also discuss the current two prevailing views-namely, 1) AhR as a promiscuous sensor for small chemicals and 2) a role for AhR as a balancing factor for cell differentiation and function, which is controlled by levels of endogenous high-affinity ligands. AhR signaling is considered a promising drug and preventive target, particularly for cancer, inflammatory, and autoimmune diseases. Therefore, understanding its biology is of great importance.
Collapse
Affiliation(s)
- Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| | - Agneta Rannug
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| |
Collapse
|
15
|
Esser C, Bargen I, Weighardt H, Haarmann-Stemmann T, Krutmann J. Functions of the aryl hydrocarbon receptor in the skin. Semin Immunopathol 2013; 35:677-91. [PMID: 23949496 DOI: 10.1007/s00281-013-0394-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/16/2013] [Indexed: 12/13/2022]
Abstract
Among other functions, the skin serves as the barrier against the environment and provides vital protection from physical or chemical harm and from infection. Skin cells express the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor and sensor of environmental chemicals; at the same time, AHR ligands are abundant in skin from exogenous or endogenous sources. For example, solar radiation, in particular ultraviolet (UV) B, generates AHR ligands from tryptophan in the skin. Recent evidence has shown that AHR is involved in the (patho)physiology of skin including the regulation of skin pigmentation, photocarcinogenesis, and skin inflammation. We here provide a state-of-the-art summary of work which relates to the role of the AHR in (1) adaptive responses against environmental challenges such as UVB or topical chemicals and (2) intrinsic developmental roles for homeostasis of skin cells and (3) skin immunity. We also discuss the existing evidence that AHR antagonists or AHR ligands may be used for the prevention and/or treatment of skin disease.
Collapse
Affiliation(s)
- Charlotte Esser
- Leibniz-Research Institute for Environmental Medicine (IUF), Auf'm Hennekamp 50, 40225, Dusseldorf, Germany,
| | | | | | | | | |
Collapse
|
16
|
The aryl hydrocarbon receptor: a novel target for immunomodulation in organ transplantation. Transplantation 2013; 95:983-90. [PMID: 23263608 DOI: 10.1097/tp.0b013e31827a3d1d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aryl hydrocarbon receptor (AHR), which has been central to studies in toxicology for years as the receptor for the toxicant dioxin, is rapidly gaining interest in immunology based on its ability to influence T-cell differentiation. Multiple studies have documented that binding of this receptor with certain ligands favors T-cell differentiation toward regulatory T cells, and paradoxically, binding of this same receptor with different ligands enhances Th17 effector cell differentiation. This finding has been confirmed in both in vitro and in vivo models, where different ligands are able to either ameliorate or conversely aggravate autoimmunity in experimental autoimmune encephalomyelitis. The AHR has both an endogenous role that is important in development and normal physiology and an exogenous role as a receptor for manmade toxicants, with their binding leading to transcription of cytochrome P450 enzymes that metabolize these same ligands. Based on recent reports that will be summarized in this overview, we will consider the role that the AHR might play as a sensor to the outside environment, leading to alteration of the acquired immune system that might have relevance in transplantation or other medical conditions. In addition to describing the data in normal physiology and T-cell differentiation, we will present examples of the importance of this receptor in preclinical models of disease and highlight specific ligands that target the AHR and will have efficacy in treating transplant rejection and in tolerance protocols.
Collapse
|
17
|
Mezrich JD, Nguyen LP, Kennedy G, Nukaya M, Fechner JH, Zhang X, Xing Y, Bradfield CA. SU5416, a VEGF receptor inhibitor and ligand of the AHR, represents a new alternative for immunomodulation. PLoS One 2012; 7:e44547. [PMID: 22970246 PMCID: PMC3435281 DOI: 10.1371/journal.pone.0044547] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/08/2012] [Indexed: 11/19/2022] Open
Abstract
The experimental compound SU5416 went as far as Phase III clinical trials as an anticancer agent, putatively because of its activity as a VEGFR-2 inhibitor, but showed poor results. Here, we show that SU5416 is also an aryl hydrocarbon receptor (AHR) agonist with unique properties. Like TCDD, SU5416 favors induction of indoleamine 2,3 dioxygenase (IDO) in immunologically relevant populations such as dendritic cells in an AHR-dependent manner, leading to generation of regulatory T-cells in vitro. These characteristics lead us to suggest that SU5416 may be an ideal clinical agent for treatment of autoimmune diseases and prevention of transplant rejection, two areas where regulatory ligands of the AHR have shown promise. At the same time, AHR agonism might represent a poor characteristic for an anticancer drug, as regulatory T-cells can inhibit clearance of cancer cells, and activation of the AHR can lead to upregulation of xenobiotic metabolizing enzymes that might influence the half-lives of co-administered chemotherapeutic agents. Not only does SU5416 activate the human AHR with a potency approaching 2,3,7,8-tetrachlorodibenzo-p-dioxin, but it also activates polymorphic murine receptor isoforms (encoded by the Ahr(d) and Ahr(b1) alleles) with similar potency, a finding that has rarely been described and may have implications in identifying true endogenous ligands of this receptor.
Collapse
Affiliation(s)
- Joshua D Mezrich
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|