1
|
Hansen MH, Cédile O, Kjeldsen MLG, Thomassen M, Preiss B, von Neuhoff N, Abildgaard N, Nyvold CG. Toward Cytogenomics: Technical Assessment of Long-Read Nanopore Whole-Genome Sequencing for Detecting Large Chromosomal Alterations in Mantle Cell Lymphoma. J Mol Diagn 2023; 25:796-805. [PMID: 37683892 DOI: 10.1016/j.jmoldx.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
The current advances and success of next-generation sequencing hold the potential for the transition of cancer cytogenetics toward comprehensive cytogenomics. However, the conventional use of short reads impedes the resolution of chromosomal aberrations. Thus, this study evaluated the detection and reproducibility of extensive copy number alterations and chromosomal translocations using long-read Oxford Nanopore Technologies whole-genome sequencing compared with short-read Illumina sequencing. Using the mantle cell lymphoma cell line Granta-519, almost 99% copy-number reproducibility at the 100-kilobase resolution between replicates was demonstrated, with 98% concordance to Illumina. Collectively, the performance of copy number calling from 1.5 million to 7.5 million long reads was comparable to 1 billion Illumina-based reads (50× coverage). Expectedly, the long-read resolution of canonical translocation t(11;14)(q13;q32) was superior, with a sequence similarity of 89% to the already published CCND1/IGH junction (9× coverage), spanning up to 69 kilobases. The cytogenetic profile of Granta-519 was in general agreement with the literature and karyotype, although several differences remained unresolved. In conclusion, contemporary long-read sequencing is primed for future cytogenomics or sequencing-guided cytogenetics. The combined strength of long- and short-read sequencing is apparent, where the high-precision junctional mapping complements and splits paired-end reads. The potential is emphasized by the flexible single-sample genomic data acquisition of Oxford Nanopore Technologies with the high resolution of allelic imbalances using Illumina short-read sequencing.
Collapse
Affiliation(s)
- Marcus H Hansen
- Hematology-Pathology Research Laboratory, Research Unit of Hematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark.
| | - Oriane Cédile
- Hematology-Pathology Research Laboratory, Research Unit of Hematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark; OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Marie L G Kjeldsen
- Hematology-Pathology Research Laboratory, Research Unit of Hematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Birgitte Preiss
- Hematology-Pathology Research Laboratory, Research Unit of Hematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Nils von Neuhoff
- Department of Pediatric Hematology and Oncology, Essen University Hospital and University of Duisburg-Essen, Essen, Germany
| | - Niels Abildgaard
- Hematology-Pathology Research Laboratory, Research Unit of Hematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Charlotte G Nyvold
- Hematology-Pathology Research Laboratory, Research Unit of Hematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark; OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| |
Collapse
|
2
|
Simonsen AT, Sørensen CD, Ebbesen LH, Bødker JS, Bentzen HHN, Nyvold CG. SOX11 as a minimal residual disease marker for Mantle cell lymphoma. Leuk Res 2014; 38:918-24. [DOI: 10.1016/j.leukres.2014.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/15/2014] [Accepted: 04/14/2014] [Indexed: 01/08/2023]
|