1
|
May L, Barnes M, Hardcastle N, Hernandez V, Saez J, Rosenfeld A, Poder J. Intrafraction motion in intra-cranial multi-target stereotactic radiosurgery plans: A multi-institutional investigation on robustness. Phys Med 2025; 130:104900. [PMID: 39854920 DOI: 10.1016/j.ejmp.2025.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
PURPOSE Even with modern immobilisation devices, some amount of intrafraction patient motion is likely to occur during stereotactic radiosurgery (SRS) delivery. The aim of this work was to investigate how robustness of plans to intrafraction motion is affected by plan geometry and complexity. METHODS In 2018, the Trans-Tasman Radiation Oncology Group conducted a multiple-target SRS international planning challenge, the data from which was utilised in this study. Patient geometry included five intracranial targets with a prescription of 20 Gy. A previously validated in-house algorithm was used to simulate realistic intrafraction patient motion for these plans. Three scenario types were simulated: translational intrafraction motion; rotational motion; and simultaneous rotational and translational motion. Dosimetric impact was assessed using: dose covering 98 % of planning target volume, dose covering 99 % of gross tumour volume (GTV D99%), volume of normal brain receiving 12 Gy and maximum dose covering 0.03 cc brainstem. RESULTS GTV D99% was reduced by up to 70 %, with the strongest correlations between planning factors and robustness to intrafraction motion found for plan complexity. Despite only moderate correlation strength at r = 0.4, lower complexity plans had, on average, 5 % - 9 % less intrafraction motion scenarios with failing targets compared to the highest complexity plans. CONCLUSIONS SRS plans with lower complexity, in particular larger mean multi-leaf collimator (MLC) gap and MLC aperture irregularity, were shown to improve plan robustness to intrafraction patient motion.
Collapse
Affiliation(s)
- Lauren May
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia.
| | - Micah Barnes
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, VIC 3168, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, Tarragona, Spain
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Spain
| | - Anatoly Rosenfeld
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia
| | - Joel Poder
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; St George Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Physics, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
2
|
May L, Barnes M, Hardcastle N, Hernandez V, Saez J, Rosenfeld A, Poder J. Multi-institutional investigation into the robustness of intra-cranial multi-target stereotactic radiosurgery plans to patient setup errors. Phys Med 2024; 124:103423. [PMID: 38970949 DOI: 10.1016/j.ejmp.2024.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
PURPOSE This study aimed to analyse correlations between planning factors including plan geometry and plan complexity with robustness to patient setup errors. METHODS Multiple-target brain stereotactic radiosurgery (SRS) plans were obtained through the Trans-Tasman Radiation Oncology Group (TROG) international treatment planning challenge (2018). The challenge dataset consisted of five intra-cranial targets with a 20 Gy prescription. Setup error was simulated using an in-house tool. Dose to targets was assessed via dose covering 99 % (D99 %) of gross tumour volume (GTV) and 98 % of planning target volume (PTV). Dose to organs at risk was assessed using volume of normal brain receiving 12 Gy and maximum dose covering 0.03 cc of brainstem. Plan complexity was assessed via edge metric, modulation complexity score, mean multi-leaf collimator (MLC) gap, mean MLC speed and plan modulation. RESULTS Even for small (0.5 mm/°) errors, GTV D99 % was reduced by up to 20 %. The strongest correlation was found between lower complexity plans (larger mean MLC gap and lower edge metric) and higher robustness to setup error. Lower complexity plans had 1 %-20 % fewer targets/scenarios with GTV D99 % falling below the specified tolerance threshold. These complexity metrics correlated with 100 % isodose volume sphericity and dose conformity, though similar conformity was achievable with a range of complexities. CONCLUSIONS A higher level of importance should be directed towards plan complexity when considering plan robustness. It is recommended when planning multi-target SRS, larger MLC gaps and lower MLC aperture irregularity be considered during plan optimisation due to higher robustness should patient positioning errors occur.
Collapse
Affiliation(s)
- Lauren May
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia.
| | - Micah Barnes
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, VIC 3168, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, Tarragona, Spain
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Spain
| | - Anatoly Rosenfeld
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia
| | - Joel Poder
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; St George Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Physics, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
3
|
Liu M, Cygler JE, Tiberi D, Doody J, Malone S, Vandervoort E. Dosimetric impact of rotational errors in trigeminal neuralgia radiosurgery using CyberKnife. J Appl Clin Med Phys 2024; 25:e14238. [PMID: 38131465 PMCID: PMC11005971 DOI: 10.1002/acm2.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE Trigeminal neuralgia (TN) can be treated on the CyberKnife system using two different treatment delivery paths: the general-purpose full path corrects small rotations, while the dedicated trigeminal path improves dose fall-off but does not allow rotational corrections. The study evaluates the impact of uncorrected rotations on brainstem dose and the length of CN5 (denoted as Leff) covered by the prescription dose. METHODS AND MATERIALS A proposed model estimates the delivered dose considering translational and rotational delivery errors for TN treatments on the CyberKnife system. The model is validated using radiochromic film measurements with and without rotational setup error for both paths. Leff and the brainstem dose is retrospectively assessed for 24 cases planned using the trigeminal path. For 15 cases, plans generated using both paths are compared for the target coverage and toxicity to the brainstem. RESULTS In experimental validations, measured and estimated doses agree at 1%/1 mm level. For 24 cases, the treated Leff is 5.3 ± 1.7 mm, reduced from 5.9 ± 1.8 mm in the planned dose. Constraints for the brainstem are met in 23 cases for the treated dose but require frequent treatment interruption to maintain rotational corrections <0.5° using the trigeminal path. The treated length of CN5, and plan quality metrics are similar for the two paths, favoring the full path where rotations are corrected. CONCLUSIONS We validated an analytical model that can provide patient-specific tolerances on rotations to meet plan objectives. Treatment using the full path can reduce treatment time and allow for rotational corrections.
Collapse
Affiliation(s)
- Ming Liu
- Department of Medical PhysicsThe Ottawa Hospital Cancer CenterOttawaOntarioCanada
- Department of PhysicsCarleton UniversityOttawaOntarioCanada
| | - Joanna E Cygler
- Department of Medical PhysicsThe Ottawa Hospital Cancer CenterOttawaOntarioCanada
- Department of PhysicsCarleton UniversityOttawaOntarioCanada
- Department of RadiologyUniversity of OttawaOttawaOntarioCanada
| | - David Tiberi
- Department of Radiation OncologyThe Ottawa Hospital Cancer CentreOttawaOntarioCanada
- Department of Radiation OncologyUniversity of OttawaOttawaOntarioCanada
| | - Janice Doody
- Radiation Medicine ProgramThe Ottawa Hospital Cancer CentreOttawaOntarioCanada
| | - Shawn Malone
- Department of Radiation OncologyThe Ottawa Hospital Cancer CentreOttawaOntarioCanada
- Department of Radiation OncologyUniversity of OttawaOttawaOntarioCanada
| | - Eric Vandervoort
- Department of Medical PhysicsThe Ottawa Hospital Cancer CenterOttawaOntarioCanada
- Department of PhysicsCarleton UniversityOttawaOntarioCanada
- Department of RadiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
4
|
Liu M, Cygler JE, Dennis K, Vandervoort E. A dose perturbation tool for robotic radiosurgery: Experimental validation and application to liver lesions. J Appl Clin Med Phys 2022; 23:e13766. [PMID: 36094024 PMCID: PMC9680574 DOI: 10.1002/acm2.13766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/09/2022] [Accepted: 08/04/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND An analytical tool is empirically validated and used to assess the delivered dose to liver lesions accounting for different types of errors in robotic radiosurgery treatment. MATERIAL AND METHODS A tool is proposed to estimate the target doses taking into account the translation, rotation, and deformation of a target. Translational errors are modeled as a spatial convolution of the planned dose with a probability distribution function derived from treatment data. Rotations are modeled by rotating the target volume about the imaging isocenter. Target deformation is simulated as an isotropic target expansion or contraction based on changes in inter-fiducial spacing. The estimated dose is validated using radiochromic film measurements in nine experimental conditions, including in-phase and out-of-phase internal-and-external breathing motion patterns, with and without uncorrectable rotations, and for homogenous and heterogeneous phantoms. The measured dose is compared to the perturbed and planned doses using gamma analyses. This proposed tool is applied to assess the dose coverage for liver treatments using D99/Rx where D99 and Rx are the minimum target and prescription doses, respectively. These metrics are used to evaluate plan robustness to different magnitudes of rotational errors. Case studies are presented to illustrate how to improve plan robustness against delivery errors. RESULTS In the experimental validations, measured dose agrees with the estimated dose at the 2%/2 mm level. When accounting for translational and rotational tracking residual errors using this tool, approximately one-fifth of targets are considered underdosed (D99/Rx < 1.0). If target expansion or contraction is modeled, approximately one-third of targets are underdosed. The dose coverage can be improved if treatments are planned following proposed guidelines. CONCLUSION The dose perturbation model can be used to assess dose delivery accuracy and investigate plan robustness to different types of errors.
Collapse
Affiliation(s)
- Ming Liu
- Department of Medical PhysicsThe Ottawa Hospital Cancer CenterOttawaCanada
- Department of PhysicsCarleton UniversityOttawaCanada
| | - Joanna E. Cygler
- Department of Medical PhysicsThe Ottawa Hospital Cancer CenterOttawaCanada
- Department of PhysicsCarleton UniversityOttawaCanada
- Division of Medical Physics, Department of RadiologyThe University of OttawaOttawaCanada
| | - Kristopher Dennis
- Division of Radiation OncologyThe Ottawa Hospital and the University of OttawaOttawaCanada
| | - Eric Vandervoort
- Department of Medical PhysicsThe Ottawa Hospital Cancer CenterOttawaCanada
- Department of PhysicsCarleton UniversityOttawaCanada
- Division of Medical Physics, Department of RadiologyThe University of OttawaOttawaCanada
| |
Collapse
|
5
|
Biston MC, Liang X, Li Z. Robust optimization should be used to replace PTV in radiotherapy treatment planning. Med Phys 2021; 48:7565-7567. [PMID: 34554590 DOI: 10.1002/mp.15249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Xiaoying Liang
- Radiation Oncology Department, Mayo Clinic, Jacksonville, Florida, USA
| | - Zuofeng Li
- Radiation Oncology Department, Guangzhou Concord Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Karlsson K, Lax I, Lindbäck E, Grozman V, Lindberg K, Wersäll P, Poludniowski G. Estimation of delivered dose to lung tumours considering setup uncertainties and breathing motion in a cohort of patients treated with stereotactic body radiation therapy. Phys Med 2021; 88:53-64. [PMID: 34175747 DOI: 10.1016/j.ejmp.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Dose-response relationships for local control of lung tumours treated with stereotactic body radiotherapy (SBRT) have proved ambiguous, however, these have been based on the prescribed or planned dose. Delivered dose to the target may be a better predictor for local control. In this study, the probability of the delivered minimum dose to the clinical target volume (CTV) in relation to the prescribed dose was estimated for a cohort of patients, considering geometrical uncertainties. MATERIALS AND METHODS Delivered doses were retrospectively simulated for 50 patients treated with SBRT for lung tumours, comparing two image-guidance techniques: pre-treatment verification computed tomography (IG1) and online cone-beam computed tomography (IG2). The prescribed dose was typically to the 67% isodose line of the treatment plan. Simulations used in-house software that shifted the static planned dose according to a breathing motion and sampled setup/matching errors. Each treatment was repeatedly simulated, generating a multiplicity of dose-volume histograms (DVH). From these, tumour-specific and population-averaged statistics were derived. RESULTS For IG1, the probability that the minimum CTV dose (D98%) exceeded 100% of the prescribed dose was 90%. With IG2, this probability increased to 99%. CONCLUSIONS Doses below the prescribed dose were delivered to a considerably larger part of the population prior to the introduction of online soft-tissue image-guidance. However, there is no clear evidence that this impacts local control, when compared to previous published data.
Collapse
Affiliation(s)
- Kristin Karlsson
- Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Ingmar Lax
- Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Elias Lindbäck
- Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Vitali Grozman
- Section of Thoracic Radiology, Department of Radiology, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Karin Lindberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Section of Head, Neck, Lung and Skin Tumours, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden.
| | - Peter Wersäll
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Section of Radiotherapy, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden.
| | - Gavin Poludniowski
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
Skouboe S, De Roover R, Gammelmark Muurholm C, Ravkilde T, Crijns W, Hansen R, Depuydt T, Poulsen PR. Six degrees of freedom dynamic motion-including dose reconstruction in a commercial treatment planning system. Med Phys 2021; 48:1427-1435. [PMID: 33415778 DOI: 10.1002/mp.14707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Intrafractional motion during radiotherapy delivery can deteriorate the delivered dose. Dynamic rotational motion of up to 38 degrees has been reported during prostate cancer radiotherapy, but methods to determine the dosimetric consequences of such rotations are lacking. Here, we create and experimentally validate a dose reconstruction method that accounts for dynamic rotations and translations in a commercial treatment planning system (TPS). Interplay effects are quantified by comparing dose reconstructions with dynamic and constant rotations. METHODS The dose reconstruction accumulates the dose in points of interest while the points are moved in six degrees of freedom (6DoF) in a precalculated time-resolved four-dimensional (4D) dose matrix to emulate dynamic motion in a patient. The required 4D dose matrix was generated by splitting the original treatment plan into multiple sub-beams, each representing 0.4 s dose delivery, and recalculating the dose of the split plan in the TPS (Eclipse). The dose accumulation was performed via TPS scripting by querying the dose of each sub-beam in dynamically moving points, allowing dose reconstruction with any dynamic motion. The dose reconstruction was validated with film dosimetry for two prostate dual arc VMAT plans with intra-prostatic lesion boosts. The plans were delivered to a pelvis phantom with internal dynamic rotational motion of a film stack (21 films with 2.5 mm separation). Each plan was delivered without motion and with three prostate motion traces. Motion-including dose reconstruction was performed for each motion experiment using the actual dynamic rotation as well as a constant rotation equal to the mean rotation during the experiment. For each experiment, the 3%/2 mm γ failure rate of the TPS dose reconstruction was calculated with the film measurement being the reference. For each motion experiment, the motion-induced 3%/2 mm γ failure rate was calculated using the static delivery as the reference and compared between film measurements and TPS dose reconstruction. DVH metrics for RT structures fully contained in the film volume were also compared between film and TPS. RESULTS The mean γ failure rate of the TPS dose reconstructions when compared to film doses was 0.8% (two static experiments) and 1.7% (six dynamic experiments). The mean (range) of the motion-induced γ failure rate in film measurements was 35.4% (21.3-59.2%). The TPS dose reconstruction agreed with these experimental γ failure rates with root-mean-square errors of 2.1% (dynamic rotation dose reconstruction) and 17.1% (dose reconstruction assuming constant rotation). By DVH metrics, the mean (range) difference between dose reconstructions with dynamic and constant rotation was 4.3% (-0.3-10.6%) (urethra D 2 % ), -0.6% (-5.6%-2.5%) (urethra D 99 % ), 1.1% (-7.1-7.7%) (GTV D 2 % ), -1.4% (-17.4-7.1%) (GTV D 95 % ), -1.2% (-17.1-5.7%) (GTV D 99 % ), and -0.1% (-3.2-7.6%) (GTV mean dose). Dose reconstructions with dynamic motion revealed large interplay effects (cold and hot spots). CONCLUSIONS A method to perform dose reconstructions for dynamic 6DoF motion in a TPS was developed and experimentally validated. It revealed large differences in dose distribution between dynamic and constant rotations not identifiable through dose reconstructions with constant rotation.
Collapse
Affiliation(s)
- Simon Skouboe
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Robin De Roover
- Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | - Thomas Ravkilde
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Wouter Crijns
- Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Rune Hansen
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Tom Depuydt
- Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Per Rugaard Poulsen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Mirzapour SA, Mazur TR, Harold Li H, Salari E, Sharp GC. Technical Note: Cumulative dose modeling for organ motion management in MRI-guided radiation therapy. Med Phys 2020; 48:597-604. [PMID: 32990373 DOI: 10.1002/mp.14500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/17/2020] [Accepted: 08/08/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To develop a method for continuous online dose accumulation during irradiation in MRI-guided radiation therapy (MRgRT) and to demonstrate its application in evaluating the impact of internal organ motion on cumulative dose. METHODS An intensity-modulated radiation therapy (IMRT) treatment plan is partitioned into its unique apertures. Dose for each planned aperture is calculated using Monte Carlo dose simulation on each phase of a four-dimensional computed tomography (4D-CT) dataset. Deformable image registration is then performed both (a) between each frame of a cine-MRI acquisition obtained during treatment and a reference frame, and (b) between each volume of the 4D-CT phases and a reference phase. These registrations are used to associate each cine image with a 4D-CT phase. Additionally, for each 4D-CT phase, the deformation vector field (DVF) is used to warp the pre-calculated dose volumes per aperture onto the reference CT dataset. To estimate the dose volume delivered during each frame of the cine-MRI acquisition, we retrieve the pre-calculated warped dose volume for the delivered aperture on the associated 4D-CT phase and adjust it by a rigid translation to account for baseline drift and instances where motion on the cine image exceeds the amplitude observed between 4D-CT phases. RESULTS The proposed dose accumulation method is retrospectively applied to a liver cancer case previously treated on an MRgRT platform. Cumulative dose estimated for free-breathing and respiration-gated delivery is compared against dose calculated on static anatomy. In this sample case, the target minimum dose and D 98 varied by as much as 5% and 7%, respectively. CONCLUSION We demonstrate a technique suitable for continuous online dose accumulation during MRgRT. In contrast to other approaches, dose is pre-calculated per aperture and phase and then retrieved based on a mapping scheme between cine MRI and 4D-CT datasets, aiming at reducing the computational burden for potential real-time applications.
Collapse
Affiliation(s)
- Seyed Ali Mirzapour
- Department of Industrial, Systems, and Manufacturing Engineering, Wichita State University, Wichita, KS, 67260, USA
| | - Thomas R Mazur
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - H Harold Li
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Ehsan Salari
- Department of Industrial, Systems, and Manufacturing Engineering, Wichita State University, Wichita, KS, 67260, USA
| | - Gregory C Sharp
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
9
|
Biston MC, Chiavassa S, Grégoire V, Thariat J, Lacornerie T. Time of PTV is ending, robust optimization comes next. Cancer Radiother 2020; 24:676-686. [PMID: 32861608 DOI: 10.1016/j.canrad.2020.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
Continuous improvements have been made in the way to prescribe, record and report dose distributions since the therapeutic use of ionizing radiations. The international commission for radiation units and measurement (ICRU) has provided a common language for physicians and physicists to plan and evaluate their treatments. The PTV concept has been used for more than two decades but is becoming obsolete as the CTV-to-PTV margin creates a static dose cloud that does not properly recapitulate all planning vs. delivery uncertainties. The robust optimization concept has recently emerged to overcome the limitations of the PTV concept. This concept is integrated in the inverse planning process and minimizes deviations to planned dose distribution through integration of uncertainties in the planning objectives. It appears critical to account for the uncertainties that are specific to protons and should be accounted for to better exploit the clinical potential of proton therapy. It may also improve treatment quality particularly in hypofractionated photon plans of mobile tumors and more widely to photon radiotherapy. However, in contrast to the PTV concept, a posteriori evaluation of plan quality, called robust evaluation, using error-based scenarios is still warranted. Robust optimization metrics are warranted. These metrics are necessary to compare PTV-based photon and robustly optimized proton plans in general and in model-based NTCP approaches. Assessment of computational demand and approximations of robust optimization algorithms along with metrics to evaluate plan quality are needed but a step further to better prescribe radiotherapy may has been achieved.
Collapse
Affiliation(s)
- M-C Biston
- Department of Radiation Oncology, centre Léon-Bérard, 28, rue Laennec 69373 Lyon cedex 08, France; Creatis, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France.
| | - S Chiavassa
- Department of Medical Physics, Institut de cancérologie de l'Ouest, Saint-Herblain, France
| | - V Grégoire
- Department of Radiation Oncology, centre Léon-Bérard, 28, rue Laennec 69373 Lyon cedex 08, France
| | - J Thariat
- Department of radiation oncology, centre François-Baclesse/ARCHADE, Laboratoire de physique corpusculaire IN2P3/ENSICAEN-UMR6534, Unicaen, Normandie Universite, Caen, France
| | - T Lacornerie
- Department of Medical Physics, centre Oscar-Lambret, Lille, France
| |
Collapse
|
10
|
Korevaar EW, Habraken SJM, Scandurra D, Kierkels RGJ, Unipan M, Eenink MGC, Steenbakkers RJHM, Peeters SG, Zindler JD, Hoogeman M, Langendijk JA. Practical robustness evaluation in radiotherapy - A photon and proton-proof alternative to PTV-based plan evaluation. Radiother Oncol 2019; 141:267-274. [PMID: 31492443 DOI: 10.1016/j.radonc.2019.08.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE A planning target volume (PTV) in photon treatments aims to ensure that the clinical target volume (CTV) receives adequate dose despite treatment uncertainties. The underlying static dose cloud approximation (the assumption that the dose distribution is invariant to errors) is problematic in intensity modulated proton treatments where range errors should be taken into account as well. The purpose of this work is to introduce a robustness evaluation method that is applicable to photon and proton treatments and is consistent with (historic) PTV-based treatment plan evaluations. MATERIALS AND METHODS The limitation of the static dose cloud approximation was solved in a multi-scenario simulation by explicitly calculating doses for various treatment scenarios that describe possible errors in the treatment course. Setup errors were the same as the CTV-PTV margin and the underlying theory of 3D probability density distributions was extended to 4D to include range errors, maintaining a 90% confidence level. Scenario dose distributions were reduced to voxel-wise minimum and maximum dose distributions; the first to evaluate CTV coverage and the second for hot spots. Acceptance criteria for CTV D98 and D2 were calibrated against PTV-based criteria from historic photon treatment plans. RESULTS CTV D98 in worst case scenario dose and voxel-wise minimum dose showed a very strong correlation with scenario average D98 (R2 > 0.99). The voxel-wise minimum dose visualised CTV dose conformity and coverage in 3D in agreement with PTV-based evaluation in photon therapy. Criteria for CTV D98 and D2 of the voxel-wise minimum and maximum dose showed very strong correlations to PTV D98 and D2 (R2 > 0.99) and on average needed corrections of -0.9% and +2.3%, respectively. CONCLUSIONS A practical approach to robustness evaluation was provided and clinically implemented for PTV-less photon and proton treatment planning, consistent with PTV evaluations but without its static dose cloud approximation.
Collapse
Affiliation(s)
- Erik W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands.
| | - Steven J M Habraken
- Holland Proton Therapy Center, Delft, The Netherlands; Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Daniel Scandurra
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Roel G J Kierkels
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Mirko Unipan
- Proton Therapy Centre South-East Netherlands (ZON-PTC), Maastricht, The Netherlands
| | | | - Roel J H M Steenbakkers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Stephanie G Peeters
- Proton Therapy Centre South-East Netherlands (ZON-PTC), Maastricht, The Netherlands
| | - Jaap D Zindler
- Holland Proton Therapy Center, Delft, The Netherlands; Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Mischa Hoogeman
- Holland Proton Therapy Center, Delft, The Netherlands; Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|