1
|
Liu Y, Jiang S, Lin Y, Yu H, Yu L, Zhang X. Research landscape and trends of lung cancer radiotherapy: A bibliometric analysis. Front Oncol 2022; 12:1066557. [DOI: 10.3389/fonc.2022.1066557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Backgroundradiotherapy is one of the major treatments for lung cancer and has been a hot research area for years. This bibliometric analysis aims to present the research trends on lung cancer radiotherapy.MethodOn August 31, 2022, the authors identified 9868 articles on lung cancer radiotherapy by the Web of Science (Science Citation Indexing Expanded database) and extracted their general information and the total number of citations. A bibliometric analysis was carried out to present the research landscape, demonstrate the research trends, and determine the most cited papers (top-papers) as well as top-journals on lung cancer radiotherapy. After that, the authors analyzed the recent research hotspots based on the latest publications in top-journals.ResultsThese 9868 papers were cited a total of 268,068 times. “Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer” published in 2017 by Antonia et al.was the most cited article (2110 citations). Among the journals, New England Journal of Medicine was most influential. Moreover, J. Clin. Oncol. and Int. J. Radiat. Oncol. Biol. Phys. was both influential and productive. Corresponding authors represented the USA (2610 articles) and China mainland (2060 articles) took part in most publications and articles with corresponding authors from Netherlands were most cited (46.12 citations per paper). Chemoradiotherapy was the hottest research area, and stereotactic body radiotherapy has become a research hotspot since 2006. Radiotherapy plus immunotherapy has been highly focused since 2019.ConclusionsThis bibliometric analysis comprehensively and quantitatively presents the research trends and hotspots based on 9868 relevant articles, and further suggests future research directions. The researchers can benefit in selecting journals and in finding potential collaborators. This study can help researchers gain a comprehensive picture of the research landscape, historical development, and recent hotspots in lung cancer radiotherapy and can provide inspiration for future research.
Collapse
|
2
|
Volpe S, Piperno G, Colombo F, Biffi A, Comi S, Mastroleo F, Maria Camarda A, Casbarra A, Cattani F, Corrao G, de Marinis F, Spaggiari L, Guckenberger M, Orecchia R, Alterio D, Alicja Jereczek-Fossa B. Hypofractionated proton therapy for non-small cell lung cancer: Ready for prime time? A systematic review and meta-analysis. Cancer Treat Rev 2022; 110:102464. [DOI: 10.1016/j.ctrv.2022.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
|
3
|
The Role of Hypofractionation in Proton Therapy. Cancers (Basel) 2022; 14:cancers14092271. [PMID: 35565400 PMCID: PMC9104796 DOI: 10.3390/cancers14092271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 12/07/2022] Open
Abstract
Hypofractionated radiotherapy is an attractive approach for minimizing patient burden and treatment cost. Technological advancements in external beam radiotherapy (EBRT) delivery and image guidance have resulted in improved targeting and conformality of the absorbed dose to the disease and a reduction in dose to healthy tissue. These advances in EBRT have led to an increasing adoption and interest in hypofractionation. Furthermore, for many treatment sites, proton beam therapy (PBT) provides an improved absorbed dose distribution compared to X-ray (photon) EBRT. In the past 10 years there has been a notable increase in reported clinical data involving hypofractionation with PBT, reflecting the interest in this treatment approach. This review will discuss the reported clinical data and radiobiology of hypofractionated PBT. Over 50 published manuscripts reporting clinical results involving hypofractionation and PBT were included in this review, ~90% of which were published since 2010. The most common treatment regions reported were prostate, lung and liver, making over 70% of the reported results. Many of the reported clinical data indicate that hypofractionated PBT can be well tolerated, however future clinical trials are still needed to determine the optimal fractionation regime.
Collapse
|
4
|
Kharod SM, Nichols RC, Henderson RH, Morris CG, Pham DC, Seeram VK, Jones LM, Antonio-Miranda M, Siragusa DA, Li Z, Flampouri S, Hoppe BS. Image-Guided Hypofractionated Proton Therapy in Early-Stage Non-Small Cell Lung Cancer: A Phase 2 Study. Int J Part Ther 2020; 7:1-10. [PMID: 33274252 PMCID: PMC7707327 DOI: 10.14338/ijpt-20-00013.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Due to the excellent outcomes with image-guided stereotactic body radiotherapy for patients with early-stage non–small cell lung cancer (NSCLC) and the low treatment-related toxicities using proton therapy (PT), we investigated treatment outcomes and toxicities when delivering hypofractionated PT. Materials and Methods Between 2009 and 2018, 22 patients with T1 to T2 N0M0 NSCLC (45% T1, 55% T2) received image-guided hypofractionated PT. The median age at diagnosis was 72 years (range, 58-90). Patients underwent 4-dimensional computed tomography simulation following fiducial marker placement, and daily image guidance was performed. Nine patients (41%) were treated with 48 GyRBE in 4 fractions for peripheral lesions, and 13 patients (59%) were treated with 60 GyRBE in 10 fractions for central lesions. Patients were assessed for CTCAEv4 toxicities with computed tomography imaging for tumor assessment. The primary endpoint was grade 3 to 5 toxicity at 1 year. Results The median follow-up for all patients was 3.5 years (range, 0.2-8.8 years). The overall survival rates at 3 and 5 years were 81% and 49%, respectively. Cause-specific survival rates at 3 and 5 years were 100% and 75%, respectively. The 3-year local, regional, and distant control rates were 86%, 85%, and 95%, respectively. Four patients experienced in-field recurrences between 18 and 45 months after treatment. One patient (5%) developed a late grade 3 bronchial stricture requiring hospitalization and stent. Conclusion Image-guided hypofractionated PT for early-stage NSCLC provides promising local control and long-term survival with a low likelihood of toxicity. Regional nodal and distant relapses remain a problem.
Collapse
Affiliation(s)
- Shivam M Kharod
- Department of Radiation Oncology, University of Florida, College of Medicine, Jacksonville, FL, USA
| | - R Charles Nichols
- Department of Radiation Oncology, University of Florida, College of Medicine, Jacksonville, FL, USA
| | - Randal H Henderson
- Department of Radiation Oncology, University of Florida, College of Medicine, Jacksonville, FL, USA
| | - Christopher G Morris
- Department of Radiation Oncology, University of Florida, College of Medicine, Jacksonville, FL, USA
| | - Dat C Pham
- Department of Medicine, Division of Hematology and Medical Oncology, University of Florida, College of Medicine, Jacksonville, FL, USA
| | - Vandana K Seeram
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, College of Medicine, Jacksonville, FL, USA
| | - Lisa M Jones
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, College of Medicine, Jacksonville, FL, USA
| | | | - Daniel A Siragusa
- Department of Radiology, Division of Vascular and Interventional Radiology, University of Florida, College of Medicine, Jacksonville, FL, USA
| | - Zuofeng Li
- Department of Radiation Oncology, University of Florida, College of Medicine, Jacksonville, FL, USA
| | - Stella Flampouri
- Department of Radiation Oncology, Emory Proton Therapy Center, Atlanta, GA, USA
| | - Bradford S Hoppe
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|