1
|
Ratain MJ. Therapeutic Drug Monitoring of Oral Oncology Drugs: Another Example of Maslow's Hammer. Clin Pharmacol Ther 2024; 116:508-510. [PMID: 38605551 DOI: 10.1002/cpt.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Affiliation(s)
- Mark J Ratain
- Section of Hematology/Oncology, Department of Medicine, and Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Zhao J, Yan D, Li Y, Xu X, Li F, Zhang S, Jin J, Qiu F. Simultaneous determination of 11 oral targeted antineoplastic drugs and 2 active metabolites by LC-MS/MS in human plasma and its application to therapeutic drug monitoring in cancer patients. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124100. [PMID: 38547701 DOI: 10.1016/j.jchromb.2024.124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
Interindividual exposure differences have been identified in oral targeted antineoplastic drugs (OADs) owing to the pharmacogenetic background of the patients and their susceptibility to multiple factors, resulting in insufficient efficacy or adverse effects. Therapeutic drug monitoring (TDM) can prevent sub-optimal concentrations of OADs and improve their clinical treatment. This study aimed to develop and validate an LC-MS/MS method for the simultaneous quantification of 11 OADs (gefitinib, imatinib, lenvatinib, regorafenib, everolimus, osimertinib, sunitinib, tamoxifen, lapatinib, fruquintinib and sorafenib) and 2 active metabolites (N-desethyl sunitinib and Z-endoxifen) in human plasma. Protein precipitation was used to extract OADs from the plasma samples. Chromatographic separation was performed using an Eclipse XDB-C18 (4.6 × 150 mm, 5 μm) column with a gradient elution of the mobile phase composed of 2 mM ammonium acetate with 0.1 % formic acid in water (solvent A) and methanol (solvent B) at a flow rate of 0.8 mL/min. Mass analysis was performed using positive ion mode electrospray ionization in multiple-reaction monitoring mode. The developed method was validated following FDA bioanalytical guidelines. The calibration curves were linear over the range of 2-400 ng/mL for gefitinib, imatinib, lenvatinib, regorafenib, and everolimus; 1-200 ng/mL for osimertinib, sunitinib, N-desethyl sunitinib, tamoxifen, and Z-endoxifen; and 5-1000 ng/mL for lapatinib, fruquintinib, and sorafenib, with all coefficients of correlation above 0.99. The intra- and inter-day imprecision was below 12.81 %. This method was successfully applied to the routine TDM of gefitinib, lenvatinib, regorafenib, osimertinib, fruquintinib, and sorafenib to optimize the dosage regimens.
Collapse
Affiliation(s)
- Jing Zhao
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201213, China
| | - Dongming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201213, China
| | - Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201213, China
| | - Xiaoqing Xu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201213, China
| | - Fengling Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201213, China
| | - Shuang Zhang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201213, China
| | - Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201213, China.
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201213, China.
| |
Collapse
|
3
|
Zhu XF, Sun ZL, Ma J, Hu B, Yu MC, Liu XJ, Yang P, Xu Y, Ju D, Mu Q. Synergistic anticancer effect of flavonoids from Sophora alopecuroides with Sorafenib against hepatocellular carcinoma. Phytother Res 2023; 37:592-610. [PMID: 36180975 DOI: 10.1002/ptr.7637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 01/30/2023]
Abstract
Sorafenib (SF), a multi-kinase inhibitor, is the first FDA-approved systemic chemotherapy drug for advanced hepatocellular carcinoma (HCC). However, its clinical application is limited by severe toxicity and side effects associated with high applied doses. Sophora alopecuroides L. is traditionally used as Chinese herbal medicine for treating gastrointestinal diseases, bacillary dysentery, viral hepatitis, and other diseases, and exerts an important role in anti-tumor. Hence, we investigated the synergistic actions of seventeen flavonoids from this herb combined with SF against HCC cell lines and their primary mechanism. In the experiment, most compounds were found to prominently enhance the inhibitory effects of SF on HCC cells than their alone treatment. Among them, three compounds leachianone A (1), sophoraflavanone G (3), and trifolirhizin (17) exhibited significantly synergistic anticancer activities against MHCC97H cells at low concentration with IC50 of SF reduced by 5.8-fold, 3.6-fold, and 3.5-fold corresponding their CI values of 0.49, 0.66, and 0.46 respectively. Importantly, compounds 3 or 17 combined with SF could synergistically induce MHCC97H cells apoptosis via the endogenously mitochondrial-mediated apoptotic pathway, involving higher Bax/Bcl-2 expressions with the activation of caspase-9 and -3, and arrest the cell cycle in G1 phases. Strikingly, this synergistic effect was also closely related to the co-suppression of ERK and AKT signaling pathways. Furthermore, compound 3 significantly enhanced the suppression of SF on tumor growth in the HepG2 xenograft model, with a 79.3% inhibition ratio at high concentration, without systemic toxicity, compared to either agent alone. These results demonstrate that the combination treatment of flavonoid 3 and SF at low doses exert synergistic anticancer effects on HCC cells in vitro and in vivo.
Collapse
Affiliation(s)
- Xiao-Feng Zhu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Zhong-Lin Sun
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jing Ma
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Bo Hu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Min-Cheng Yu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Xiu-Jie Liu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Ping Yang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yang Xu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Dianwen Ju
- School of Pharmacy, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, China
| | - Qing Mu
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Bär SI, Dittmer A, Nitzsche B, Ter-Avetisyan G, Fähling M, Klefenz A, Kaps L, Biersack B, Schobert R, Höpfner M. Chimeric HDAC and the cytoskeleton inhibitor broxbam as a novel therapeutic strategy for liver cancer. Int J Oncol 2022; 60:73. [PMID: 35485292 PMCID: PMC9097774 DOI: 10.3892/ijo.2022.5363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
Broxbam, also known as N-hydroxy-4-{1-methoxy-4-[4′-(3′-bromo-4′,5′-dimethoxyphenyl)-oxazol-5′-yl]-2-phenoxy} butanamide, is a novel chimeric inhibitor that contains two distinct pharmacophores in its molecular structure. It has been previously demonstrated to inhibit the activity of histone deacetylases (HDAC) and tubulin polymerisation, two critical components required for cancer growth and survival. In the present study, the potential suitability of broxbam for the treatment of liver cancer was investigated. The effects of broxbam on cell proliferation and apoptosis, in addition to the under-lying molecular mechanism of action, were first investigated in primary liver cancer cell lines Huh7, HepG2, TFK1 and EGI1. Real-time proliferation measurements made using the iCEL-Ligence system and viable cell number counting following crystal violet staining) revealed that broxbam time- and dose-dependently reduced the proliferation of liver cancer cell lines with IC50 values <1 µM. In addition, a significant inhibition of the growth of hepatoblastoma microtumours on the chorioallantoic membranes (CAM) of fertilised chicken eggs by broxbam was observed according to results from the CAM assay, suggesting antineoplastic potency in vivo. Broxbam also exerted apoptotic effects through p53- and mitochondria-driven caspase-3 activation in Huh7 and HepG2 cells according to data from western blotting (p53 and phosphorylated p53), mitochondrial membrane potential measurements (JC-1 assay) and fluorometric capsase-3 measurements. Notably, no contribution of unspecific cytotoxic effects mediated by broxbam were observed from LDH-release measurements. HDAC1, -2, -4 and -6 expression was measured by western blotting and the HDAC inhibitory potency of broxbam was next evaluated using subtype-specific HDAC enzymatic assays, which revealed a largely pan-HDAC inhibitory activity with the most potent inhibition observed on HDAC6. Silencing HDAC6 expression in Huh7 cells led to a drop in the expression of the proliferation markers Ki-67 and E2F3, suggesting that HDAC6 inhibition by broxbam may serve a predomi-nant role in their antiproliferative effects on liver cancer cells. Immunofluorescence staining of cytoskeletal proteins (α-tubulin & actin) of broxbam-treated HepG2 cells revealed a pronounced inhibition of tubulin polymerisation, which was accompanied by reduced cell migration as determined by wound healing scratch assays. Finally, data from zebrafish angiogenesis assays revealed marked antiangiogenic effects of broxbam in vivo, as shown by the suppression of subintestinal vein growth in zebrafish embryos. To conclude, the pleiotropic anticancer activities of this novel chimeric HDAC- and tubulin inhibitor broxbam suggest that this compound is a promising candidate for liver cancer treatment, which warrants further pre-clinical and clinical evaluation.
Collapse
Affiliation(s)
- Sofia Isolde Bär
- Organic Chemistry Laboratory, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Alexandra Dittmer
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Gohar Ter-Avetisyan
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Michael Fähling
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Adrian Klefenz
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Leonard Kaps
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| |
Collapse
|
5
|
Predictive factors for long-term survival in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Gastroenterol Hepatol 2021; 33:e114-e120. [PMID: 33177383 DOI: 10.1097/meg.0000000000001974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Sorafenib, used for advanced-stage hepatocellular carcinoma (HCC), has an overall survival (OS) of 10 months. However, some patients have better response and long-term survival (LTS). Aims to assess predictive factors for LTS. METHODS Retrospectively reviewed 77 advanced HCC patients, starting sorafenib treatment between 2007 and 2016, with LTS (OS ≥24 months) as primary endpoint. Univariate and multivariable analysis of clinical variables were performed in order to identify predictive factors for LTS. RESULTS Patients: seventy (90.9%) males; median age: 65 years (39-82). All had cirrhosis mostly HCV infection (n = 32, 41.6%). Majority were Child-Pugh class A (n = 50, 64.9%); median MELD-Na: 11 (6-30). Multinodular HCC: 74% (n = 57); portal vein invasion (PVI): 50.6% (n = 39); extrahepatic spread: 18.2% (n = 14). Median time between HCC diagnosis and sorafenib start: 3.3 months (0-37.6). Median OS: 13 months [95% confidence interval (CI) 8.2-17.8]. Twenty-five (32.5%) patients were considered LTS, with amedian OS: 52.3 months (95% CI 17.1-87.4). Multivariable analysis identified Child-Pugh class A [odds ratio (OR) 11.1, 95% CI 1.78-69.54] and absence of PVI (OR 7.88, 95% CI 1.56-39.8) as independent predictors of LTS. Sub-analysis of Child-Pugh class A: absence of PVI (OR 7.13, 95% CI 1.69-30.2) and alpha-fetoprotein <400 ng/ml (OR 5.82, 95% CI 1.18-28.75) independently related to LTS. CONCLUSION Despite global short median OS, sorafenib treatment is associated with longer than 2-year survival in a sub-group, more likely in compensated liver disease and absence of PVI.
Collapse
|
6
|
Prognostic value of baseline imaging and clinical features in patients with advanced hepatocellular carcinoma. Br J Cancer 2021; 126:211-218. [PMID: 34686780 PMCID: PMC8770679 DOI: 10.1038/s41416-021-01577-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/16/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Aims To investigate the prognostic value of baseline imaging features for overall survival (OS) and liver decompensation (LD) in patients with hepatocellular carcinoma (HCC). Design Patients with advanced HCC from the SORAMIC trial were evaluated in this post hoc analysis. Several radiological imaging features were collected from baseline computed tomography (CT) and magnetic resonance imaging (MRI) imaging, besides clinical values. The prognostic value of these features for OS and LD (grade 2 bilirubin increase) was quantified with univariate Cox proportional hazard models and multivariate Least Absolute Shrinkage and Selection Operator (LASSO) regression. Results Three hundred and seventy-six patients were included in this study. The treatment arm was not correlated with OS. LASSO showed satellite lesions, atypical HCC, peritumoral arterial enhancement, larger tumour size, higher albumin–bilirubin (ALBI) score, liver–spleen ratio <1.5, ascites, pleural effusion and higher bilirubin values were predictors of worse OS, and higher relative liver enhancement, smooth margin and capsule were associated with better OS. LASSO analysis for LD showed satellite lesions, peritumoral hypointensity in hepatobiliary phase, high ALBI score, higher bilirubin values and ascites were predictors of LD, while randomisation to sorafenib arm was associated with lower LD. Conclusions Imaging features showing aggressive tumour biology and poor liver function, in addition to clinical parameters, can serve as imaging biomarkers for OS and LD in patients receiving sorafenib and selective internal radiation therapy for HCC.
Collapse
|
7
|
Iacobazzi RM, Vischio F, Arduino I, Canepa F, Laquintana V, Notarnicola M, Scavo MP, Bianco G, Fanizza E, Lopedota AA, Cutrignelli A, Lopalco A, Azzariti A, Curri ML, Franco M, Giannelli G, Lee BC, Depalo N, Denora N. Magnetic implants in vivo guiding sorafenib liver delivery by superparamagnetic solid lipid nanoparticles. J Colloid Interface Sci 2021; 608:239-254. [PMID: 34626971 DOI: 10.1016/j.jcis.2021.09.174] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Solid lipid nanoparticles (SLNs), co-encapsulating superparamagnetic iron oxide nanoparticles and sorafenib, have been exploited for magnetic-guided drug delivery to the liver. Two different magnetic configurations, both comprising two small magnets, were under-skin implanted to investigate the effect of the magnetic field topology on the magnetic SLNP accumulation in liver tissues. A preliminary simulation analysis was performed to predict the magnetic field topography for each tested configuration. EXPERIMENTS SLNs were prepared using a hot homogenization approach and characterized using complementary techniques. Their in vitro biological behavior was assessed in HepG-2 liver cancer cells; wild-type mice were used for the in vivo study. The magnet configuration that resulted in a higher magnetic targeting efficiency was investigated by evaluating the iron content in homogenated murine liver tissues. FINDINGS SLNs, characterized by an average size smaller than 200 nm, retained their superparamagnetic behavior and relevant molecular resonance imaging properties as negative contrast agents. The evaluation of iron accumulation in the liver tissues was consistent with the magnetic induction profile of each magnet configuration, concurring with the results predicted by simulation analysis and obtained by measurements in living mice.
Collapse
Affiliation(s)
| | - Fabio Vischio
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; CNR-Institute for Chemical-Physical Processes (IPCF) Bari Division, Via Orabona 4, 70125 Bari, Italy.
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | - Fabio Canepa
- Department of Chemistry and Industrial Chemistry, University of Genoa, 16146 Genoa, Italy.
| | - Valentino Laquintana
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | - Maria Notarnicola
- National Institute of Gastroenterology "S. de Bellis," Personalized Medicine Laboratory, Via Turi 26 Castellana Grotte, Bari, Italy.
| | - Maria Principia Scavo
- National Institute of Gastroenterology "S. de Bellis," Personalized Medicine Laboratory, Via Turi 26 Castellana Grotte, Bari, Italy.
| | - Giusy Bianco
- National Institute of Gastroenterology "S. de Bellis," Personalized Medicine Laboratory, Via Turi 26 Castellana Grotte, Bari, Italy.
| | - Elisabetta Fanizza
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; CNR-Institute for Chemical-Physical Processes (IPCF) Bari Division, Via Orabona 4, 70125 Bari, Italy.
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | - Annalisa Cutrignelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | - Amalia Azzariti
- IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco 65, 70124 Bari, Italy.
| | - Maria Lucia Curri
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; CNR-Institute for Chemical-Physical Processes (IPCF) Bari Division, Via Orabona 4, 70125 Bari, Italy.
| | - Massimo Franco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "de Bellis," Via Turi 26 Castellana Grotte, Bari, Italy.
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.
| | - Nicoletta Depalo
- CNR-Institute for Chemical-Physical Processes (IPCF) Bari Division, Via Orabona 4, 70125 Bari, Italy.
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
8
|
Fahmy A, Hopkins AM, Sorich MJ, Rowland A. Evaluating the utility of therapeutic drug monitoring in the clinical use of small molecule kinase inhibitors: a review of the literature. Expert Opin Drug Metab Toxicol 2021; 17:803-821. [PMID: 34278936 DOI: 10.1080/17425255.2021.1943357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Orally administered small molecule kinase inhibitors (KI) are a key class of targeted anti-cancer medicines that have contributed substantially to improved survival outcomes in patients with advanced disease. Since the introduction of KIs in 2001, there has been a building body of evidence that the benefit derived from these drugs may be further enhanced by individualizing dosing on the basis of concentration.Areas covered: This review considers the rationale for individualized KI dosing and the requirements for robust therapeutic drug monitoring (TDM). Current evidence supporting TDM-guided KI dosing is presented and critically evaluated, and finally potential approaches to address translational challenges for TDM-guided KI dosing and alternate approaches to support individualization of KI dosing are discussed.Expert opinion: Intuitively, the individualization of KI dosing through an approach such as TDM-guided dosing has great potential to enhance the effectiveness and tolerability of these drugs. However, based on current literature evidence it is unrealistic to propose that TDM-guided KI dosing should be routinely implemented into clinical practice.
Collapse
Affiliation(s)
- Alia Fahmy
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
9
|
Chen LC, Lin HY, Hung SK, Chiou WY, Lee MS. Role of modern radiotherapy in managing patients with hepatocellular carcinoma. World J Gastroenterol 2021; 27:2434-2457. [PMID: 34092968 PMCID: PMC8160620 DOI: 10.3748/wjg.v27.i20.2434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Several treatment options are available for managing HCC patients, classified roughly as local, local-regional, and systemic therapies. The high post-monotherapy recurrence rate of HCC urges the need for the use of combined modalities to increase tumor control and patient survival. Different international guidelines offer treatment recommendations based on different points of view and classification systems. Radiotherapy (RT) is a well-known local-regional treatment modality for managing many types of cancers, including HCC. However, only some of these treatment guidelines include RT, and the role of combined modalities is rarely mentioned. Hence, the present study reviewed clinical evidence for the use of different combined modalities in managing HCC, focusing on modern RT's role. Modern RT has an increased utility in managing HCC patients, mainly due to two driving forces. First, technological advancement (e.g., stereotactic body radiotherapy and advanced proton-beam therapy) enables precise delivery of radiation to increase tumor control and reduce side effects in the surrounding normal tissue. Second, the boom in developing target therapies and checkpoint-blockade immunotherapy prolongs overall survival in HCC patients, re-emphasizing the importance of local tumor control. Remarkably, RT combines with systemic therapies to generate the systemic therapy augmented by radiotherapy effect, a benefit now being actively investigated.
Collapse
Affiliation(s)
- Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi 62102, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|