1
|
Guzene L, Beddok A, Nioche C, Modzelewski R, Loiseau C, Salleron J, Thariat J. Assessing Interobserver Variability in the Delineation of Structures in Radiation Oncology: A Systematic Review. Int J Radiat Oncol Biol Phys 2023; 115:1047-1060. [PMID: 36423741 DOI: 10.1016/j.ijrobp.2022.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE The delineation of target volumes and organs at risk is the main source of uncertainty in radiation therapy. Numerous interobserver variability (IOV) studies have been conducted, often with unclear methodology and nonstandardized reporting. We aimed to identify the parameters chosen in conducting delineation IOV studies and assess their performances and limits. METHODS AND MATERIALS We conducted a systematic literature review to highlight major points of heterogeneity and missing data in IOV studies published between 2018 and 2021. For the main used metrics, we did in silico analyses to assess their limits in specific clinical situations. RESULTS All disease sites were represented in the 66 studies examined. Organs at risk were studied independently of tumor site in 29% of reviewed IOV studies. In 65% of studies, statistical analyses were performed. No gold standard (GS; ie, reference) was defined in 36% of studies. A single expert was considered as the GS in 21% of studies, without testing intraobserver variability. All studies reported both absolute and relative indices, including the Dice similarity coefficient (DSC) in 68% and the Hausdorff distance (HD) in 42%. Limitations were shown in silico for small structures when using the DSC and dependence on irregular shapes when using the HD. Variations in DSC values were large between studies, and their thresholds were inconsistent. Most studies (51%) included 1 to 10 cases. The median number of observers or experts was 7 (range, 2-35). The intraclass correlation coefficient was reported in only 9% of cases. Investigating the feasibility of studying IOV in delineation, a minimum of 8 observers with 3 cases, or 11 observers with 2 cases, was required to demonstrate moderate reproducibility. CONCLUSIONS Implementation of future IOV studies would benefit from a more standardized methodology: clear definitions of the gold standard and metrics and a justification of the tradeoffs made in the choice of the number of observers and number of delineated cases should be provided.
Collapse
Affiliation(s)
- Leslie Guzene
- Department of Radiation Oncology, University Hospital of Amiens, Amiens, France
| | - Arnaud Beddok
- Department of Radiation Oncology, Institut Curie, Paris/Saint-Cloud/Orsay, France; Laboratory of Translational Imaging in Oncology (LITO), InsermUMR, Institut Curie, Orsay, France
| | - Christophe Nioche
- Laboratory of Translational Imaging in Oncology (LITO), InsermUMR, Institut Curie, Orsay, France
| | - Romain Modzelewski
- LITIS - EA4108-Quantif, Normastic, University of Rouen, and Nuclear Medicine Department, Henri Becquerel Center, Rouen, France
| | - Cedric Loiseau
- Department of Radiation Oncology, Centre François Baclesse; ARCHADE Research Community Caen, France; Département de Biostatistiques, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Julia Salleron
- Département de Biostatistiques, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse; ARCHADE Research Community Caen, France; Laboratoire de Physique Corpusculaire, Caen, France; Unicaen-Université de Normandie, Caen, France.
| |
Collapse
|
2
|
Altabella L, Benetti G, Camera L, Cardano G, Montemezzi S, Cavedon C. Machine learning for multi-parametric breast MRI: radiomics-based approaches for lesion classification. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7d8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
Abstract
In the artificial intelligence era, machine learning (ML) techniques have gained more and more importance in the advanced analysis of medical images in several fields of modern medicine. Radiomics extracts a huge number of medical imaging features revealing key components of tumor phenotype that can be linked to genomic pathways. The multi-dimensional nature of radiomics requires highly accurate and reliable machine-learning methods to create predictive models for classification or therapy response assessment.
Multi-parametric breast magnetic resonance imaging (MRI) is routinely used for dense breast imaging as well for screening in high-risk patients and has shown its potential to improve clinical diagnosis of breast cancer. For this reason, the application of ML techniques to breast MRI, in particular to multi-parametric imaging, is rapidly expanding and enhancing both diagnostic and prognostic power. In this review we will focus on the recent literature related to the use of ML in multi-parametric breast MRI for tumor classification and differentiation of molecular subtypes. Indeed, at present, different models and approaches have been employed for this task, requiring a detailed description of the advantages and drawbacks of each technique and a general overview of their performances.
Collapse
|
3
|
D’Aviero A, Re A, Catucci F, Piccari D, Votta C, Piro D, Piras A, Di Dio C, Iezzi M, Preziosi F, Menna S, Quaranta F, Boschetti A, Marras M, Miccichè F, Gallus R, Indovina L, Bussu F, Valentini V, Cusumano D, Mattiucci GC. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159057. [PMID: 35897425 PMCID: PMC9329735 DOI: 10.3390/ijerph19159057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023]
Abstract
Background: Organs at risk (OARs) delineation is a crucial step of radiotherapy (RT) treatment planning workflow. Time-consuming and inter-observer variability are main issues in manual OAR delineation, mainly in the head and neck (H & N) district. Deep-learning based auto-segmentation is a promising strategy to improve OARs contouring in radiotherapy departments. A comparison of deep-learning-generated auto-contours (AC) with manual contours (MC) was performed by three expert radiation oncologists from a single center. Methods: Planning computed tomography (CT) scans of patients undergoing RT treatments for H&N cancers were considered. CT scans were processed by Limbus Contour auto-segmentation software, a commercial deep-learning auto-segmentation based software to generate AC. H&N protocol was used to perform AC, with the structure set consisting of bilateral brachial plexus, brain, brainstem, bilateral cochlea, pharyngeal constrictors, eye globes, bilateral lens, mandible, optic chiasm, bilateral optic nerves, oral cavity, bilateral parotids, spinal cord, bilateral submandibular glands, lips and thyroid. Manual revision of OARs was performed according to international consensus guidelines. The AC and MC were compared using the Dice similarity coefficient (DSC) and 95% Hausdorff distance transform (DT). Results: A total of 274 contours obtained by processing CT scans were included in the analysis. The highest values of DSC were obtained for the brain (DSC 1.00), left and right eye globes and the mandible (DSC 0.98). The structures with greater MC editing were optic chiasm, optic nerves and cochleae. Conclusions: In this preliminary analysis, deep-learning auto-segmentation seems to provide acceptable H&N OAR delineations. For less accurate organs, AC could be considered a starting point for review and manual adjustment. Our results suggest that AC could become a useful time-saving tool to optimize workload and resources in RT departments.
Collapse
Affiliation(s)
- Andrea D’Aviero
- Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; (A.D.); (A.R.); (F.C.); (C.V.); (D.P.); (C.D.D.); (M.I.); (F.P.); (A.B.); (M.M.); (G.C.M.)
| | - Alessia Re
- Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; (A.D.); (A.R.); (F.C.); (C.V.); (D.P.); (C.D.D.); (M.I.); (F.P.); (A.B.); (M.M.); (G.C.M.)
| | - Francesco Catucci
- Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; (A.D.); (A.R.); (F.C.); (C.V.); (D.P.); (C.D.D.); (M.I.); (F.P.); (A.B.); (M.M.); (G.C.M.)
| | - Danila Piccari
- Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; (A.D.); (A.R.); (F.C.); (C.V.); (D.P.); (C.D.D.); (M.I.); (F.P.); (A.B.); (M.M.); (G.C.M.)
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (F.M.); (L.I.); (V.V.)
- Correspondence:
| | - Claudio Votta
- Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; (A.D.); (A.R.); (F.C.); (C.V.); (D.P.); (C.D.D.); (M.I.); (F.P.); (A.B.); (M.M.); (G.C.M.)
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (F.M.); (L.I.); (V.V.)
| | - Domenico Piro
- Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; (A.D.); (A.R.); (F.C.); (C.V.); (D.P.); (C.D.D.); (M.I.); (F.P.); (A.B.); (M.M.); (G.C.M.)
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (F.M.); (L.I.); (V.V.)
| | - Antonio Piras
- UO Radioterapia Oncologica, Villa Santa Teresa, 90011 Bagheria, Italy;
| | - Carmela Di Dio
- Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; (A.D.); (A.R.); (F.C.); (C.V.); (D.P.); (C.D.D.); (M.I.); (F.P.); (A.B.); (M.M.); (G.C.M.)
| | - Martina Iezzi
- Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; (A.D.); (A.R.); (F.C.); (C.V.); (D.P.); (C.D.D.); (M.I.); (F.P.); (A.B.); (M.M.); (G.C.M.)
| | - Francesco Preziosi
- Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; (A.D.); (A.R.); (F.C.); (C.V.); (D.P.); (C.D.D.); (M.I.); (F.P.); (A.B.); (M.M.); (G.C.M.)
| | - Sebastiano Menna
- Medical Physics, Mater Olbia Hospital, 07026 Sassari, Italy; (S.M.); (F.Q.); (D.C.)
| | | | - Althea Boschetti
- Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; (A.D.); (A.R.); (F.C.); (C.V.); (D.P.); (C.D.D.); (M.I.); (F.P.); (A.B.); (M.M.); (G.C.M.)
| | - Marco Marras
- Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; (A.D.); (A.R.); (F.C.); (C.V.); (D.P.); (C.D.D.); (M.I.); (F.P.); (A.B.); (M.M.); (G.C.M.)
| | - Francesco Miccichè
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (F.M.); (L.I.); (V.V.)
| | - Roberto Gallus
- Otolaryngology, Mater Olbia Hospital, 07026 Sassari, Italy;
| | - Luca Indovina
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (F.M.); (L.I.); (V.V.)
| | - Francesco Bussu
- Otolaryngology, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy;
- Dipartimento delle Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, 07100 Sassari, Italy
| | - Vincenzo Valentini
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (F.M.); (L.I.); (V.V.)
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Davide Cusumano
- Medical Physics, Mater Olbia Hospital, 07026 Sassari, Italy; (S.M.); (F.Q.); (D.C.)
| | - Gian Carlo Mattiucci
- Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; (A.D.); (A.R.); (F.C.); (C.V.); (D.P.); (C.D.D.); (M.I.); (F.P.); (A.B.); (M.M.); (G.C.M.)
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|