1
|
Zhang YJ, Chen LF, Li X, Chen JH, Tan ZK. Tetramethylpyrazine alleviates hypoxia-induced proliferation, migration, and inflammatory response of fibroblast-like synoviocytes via inhibiting the HIF-1α- circCDC42BPB pathway. Adv Rheumatol 2024; 64:19. [PMID: 38449057 DOI: 10.1186/s42358-024-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, which might trigger cartilage, bone damage, and disability. Recent studies have suggested that Tetramethylpyrazine (TMP), an alkaloid monomer isolated from the rhizome of the traditional herbal medicine Ligusticum wallichii Franch, exerts a broad spectrum of pharmacological properties, containing anti-inflammatory. This study aimed to analyze the role and underlying mechanism of TMP in RA. METHODS Under Hypoxia condition, RA-Fibroblast-like synoviocyte (FLS) were treated with TMP at different doses. Cell viability, proliferation, cell cycle progression, and migration were detected using Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry assay, wound healing assay, and transwell assay. Cyclin D1, Proliferating cell nuclear antigen (PCNA), Matrix metalloproteinase-2 (MMP2), MMP9, and hypoxia-inducible factor-1α (HIF-1α) protein levels were measured using western blot assay. Interleukin-6 (IL-6) and IL-8 were evaluated using ELISA. Circular RNA (circRNA) hsa_circ_0005178 (circCDC42BPB), CDC42BPB, and HIF-1α expression were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Binding between HIF-1α and CDC42BPB promoter was predicted by JASPAR and verified using dual-luciferase reporter and Chromatin immunoprecipitation (ChIP) assays. RESULTS TMP might hinder FLS proliferation, cycle progression, migration, and inflammatory response under hypoxic conditions. CircCDC42BPB expression was increased in RA patients and RA-FLSs treated with hypoxia, while its level was obviously reduced in RA-FLSs treated with hypoxia and TMP. TMP might abolish hypoxia-induced circCDC42BPB expression. Upregulation of circCDC42BPB might partially overturn the repression of TMP on hypoxia-caused RA-FLS damage. TMP might regulate circCDC42BPB level via HIF-1α in RA-FLSs under hypoxic conditions. CONCLUSION TMP might block RA-FLS injury partly via regulating the HIF-1α- circCDC42BPB pathway, providing a promising therapeutic target for RA.
Collapse
Affiliation(s)
- Yu-Jing Zhang
- Department of Rheumatology, General Hospital of Central Theater Command, No. 627 Wuyi Road, Wuchang District, Wuhan, Hubei, 430070, China
| | - Li-Feng Chen
- Department of Rheumatology, General Hospital of Central Theater Command, No. 627 Wuyi Road, Wuchang District, Wuhan, Hubei, 430070, China.
| | - Xu Li
- Department of Cardiology, Guiqian International General Hospital, No. 1 Dongfeng Avenue, Wudang District, Guiyang, Guizhou, 550018, China
| | - Jian-Hua Chen
- Department of Rheumatology, General Hospital of Central Theater Command, No. 627 Wuyi Road, Wuchang District, Wuhan, Hubei, 430070, China
| | - Zhang-Kui Tan
- Department of Rheumatology, General Hospital of Central Theater Command, No. 627 Wuyi Road, Wuchang District, Wuhan, Hubei, 430070, China
| |
Collapse
|
2
|
Li Z, Wang XQ. Clinical effect and biological mechanism of exercise for rheumatoid arthritis: A mini review. Front Immunol 2023; 13:1089621. [PMID: 36685485 PMCID: PMC9852831 DOI: 10.3389/fimmu.2022.1089621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is a common systematic, chronic inflammatory, autoimmune, and polyarticular disease, causing a range of clinical manifestations, including joint swelling, redness, pain, stiffness, fatigue, decreased quality of life, progressive disability, cardiovascular problems, and other comorbidities. Strong evidence has shown that exercise is effective for RA treatment in various clinical domains. Exercise training for relatively longer periods (e.g., ≥ 12 weeks) can decrease disease activity of RA. However, the mechanism underlying the effectiveness of exercise in reducing RA disease activity remains unclear. This review first summarizes and highlights the effectiveness of exercise in RA treatment. Then, we integrate current evidence and propose biological mechanisms responsible for the potential effects of exercise on immune cells and immunity, inflammatory response, matrix metalloproteinases, oxidative stress, and epigenetic regulation. However, a large body of evidence was obtained from the non-RA populations. Future studies are needed to further examine the proposed biological mechanisms responsible for the effectiveness of exercise in decreasing disease activity in RA populations. Such knowledge will contribute to the basic science and strengthen the scientific basis of the prescription of exercise therapy for RA in the clinical routine.
Collapse
Affiliation(s)
- Zongpan Li
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China,Department of Sport Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China,Department of Sport Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China,*Correspondence: Xue-Qiang Wang,
| |
Collapse
|
3
|
Wang L, Cui JB, Xie HM, Zuo XQ, He JL, Jia ZS, Zhang LN. Effects of Different Static Progressive Stretching Durations on Range of Motion, Myofibroblasts, and Collagen in a Posttraumatic Knee Contracture Rat Model. Phys Ther 2022; 102:6481179. [PMID: 34972861 DOI: 10.1093/ptj/pzab300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/24/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the effects of different durations of static progressive stretching (SPS) on posttraumatic knee contracture in rats, including range of motion (ROM), gait analysis, myofibroblast proliferation, and collagen regulation. METHODS The posttraumatic knee contracture model was established, and male Wistar rats were randomly divided into the 20-minute SPS treatment, 30-minute SPS treatment (S30), 40-minute SPS treatment, untreated, immobilization, and control groups. At Week 1, 2, and 4 of treatment intervention, joint ROM and gait were measured and compared. Knee joint samples stained with hematoxylin and eosin and Masson trichrome were used to observe alterations in pathological structures. Collagen density and cell numbers in the posterior joint capsule were used to assess joint capsule fibrosis and inflammation. Immunohistochemistry was used to detect type I collagen and α-smooth muscle actin expression. RESULTS The S30 group improved the most; ROM, stance, mean intensity, print area, and stride length were 115 (SD = 5) degrees, 0.423 (SD = 0.074) seconds, 156.020 (SD = 7.952), 2.116 (SD = 0.078) cm2, and 11.758 (SD = 0.548) cm, respectively. The numbers of myofibroblasts, fibroblasts, and inflammatory cells decreased, and collagen proliferation was significantly suppressed in the S30 group compared with the other groups. CONCLUSION S30 significantly improved posttraumatic knee contracture in rats, with reduced type I collagen and α-smooth muscle actin expression, decreased the numbers of myofibroblasts and inflammatory cells, suppressed fibrotic and inflammatory changes in the joint capsule, and increased joint mobility. This study provided basic evidence for an optimal standard-of-care treatment approach for posttraumatic knee joint contracture in rats, which may have significance for humans.
Collapse
Affiliation(s)
- Lu Wang
- Department of Rehabilitation Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Graduate School, Medical School of Chinese PLA, Beijing, China.,Department of Rehabilitation Medicine, Beijing Tongren Hospital, Beijing, China
| | - Jian-Bo Cui
- Department of Rehabilitation Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hui-Min Xie
- Department of Rehabilitation Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiu-Qin Zuo
- Department of Rehabilitation Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia-Le He
- Department of Rehabilitation Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Zi-Shan Jia
- Department of Rehabilitation Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Li-Ning Zhang
- Department of Rehabilitation Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Identification of Estrogen Signaling in a Prioritization Study of Intraocular Pressure-Associated Genes. Int J Mol Sci 2021; 22:ijms221910288. [PMID: 34638643 PMCID: PMC8508848 DOI: 10.3390/ijms221910288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the only modifiable risk factor for primary open-angle glaucoma (POAG). Herein we sought to prioritize a set of previously identified IOP-associated genes using novel and previously published datasets. We identified several genes for future study, including several involved in cytoskeletal/extracellular matrix reorganization, cell adhesion, angiogenesis, and TGF-β signaling. Our differential correlation analysis of IOP-associated genes identified 295 pairs of 201 genes with differential correlation. Pathway analysis identified β-estradiol as the top upstream regulator of these genes with ESR1 mediating 25 interactions. Several genes (i.e., EFEMP1, FOXC1, and SPTBN1) regulated by β-estradiol/ESR1 were highly expressed in non-glaucomatous human trabecular meshwork (TM) or Schlemm’s canal (SC) cells and specifically expressed in TM/SC cell clusters defined by single-cell RNA-sequencing. We confirmed ESR1 gene and protein expression in human TM cells and TM/SC tissue with quantitative real-time PCR and immunofluorescence, respectively. 17β-estradiol was identified in bovine, porcine, and human aqueous humor (AH) using ELISA. In conclusion, we have identified estrogen receptor signaling as a key modulator of several IOP-associated genes. The expression of ESR1 and these IOP-associated genes in TM/SC tissue and the presence of 17β-estradiol in AH supports a role for estrogen signaling in IOP regulation.
Collapse
|
5
|
Zhu H, Li J, Li Y, Zheng Z, Guan H, Wang H, Tao K, Liu J, Wang Y, Zhang W, Li C, Li J, Jia L, Bai W, Hu D. Glucocorticoid counteracts cellular mechanoresponses by LINC01569-dependent glucocorticoid receptor-mediated mRNA decay. SCIENCE ADVANCES 2021; 7:7/9/eabd9923. [PMID: 33627425 PMCID: PMC7904261 DOI: 10.1126/sciadv.abd9923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/08/2021] [Indexed: 05/05/2023]
Abstract
Mechanical stimuli on cells and mechanotransduction are essential in many biological and pathological processes. Glucocorticoid is an important hormone, roles, and mechanisms of which in cellular mechanotransduction remain unknown. Here, we report that glucocorticoid counteracted cellular mechanoresponses dependently on a novel long noncoding RNA (lncRNA), LINC01569 Further, LINC01569 mediated glucocorticoid effects on mechanotransduction by destabilizing messenger RNA (mRNA) of mechanosensors including early growth response protein 1 (EGR1), Cbp/P300-interacting transactivator 2 (CITED2), and bone morphogenic protein 7 (BMP7) in glucocorticoid receptor-mediated mRNA decay (GMD) manner. Mechanistically, LINC01569 directly bound to the GMD factor Y-box-binding protein 1 (YBX1). Then, the LINC01569-YBX1 complex was guided to the mRNAs of EGR1, CITED2, and BMP7 through specific LINC01569-mRNA interaction, thereby contributing to the successful assembly of GMD complex and triggering GMD. Our results uncovered roles of glucocorticoid in cellular mechanotransduction and novel lncRNA-dependent GMD machinery and provided potential strategy for early intervention in mechanical disorder-associated diseases.
Collapse
Affiliation(s)
- Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yize Li
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wanfu Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chao Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Wendong Bai
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
- Department of Clinical Laboratory Center, Xinjiang Command General Hospital of Chinese People's Liberation Army, Urumqi, Xinjiang 830000, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
6
|
Xu C, Chi Q, Yang L, Paul Sung KL, Wang C. Effect of mechanical injury and IL-1β on the expression of LOXs and MMP-1, 2, 3 in PCL fibroblasts after co-culture with synoviocytes. Gene 2020; 766:145149. [PMID: 32971185 DOI: 10.1016/j.gene.2020.145149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Crosstalk between posterior cruciate ligament fibroblasts (PCLfs) and synoviocytes (SCs) significantly modifies the homeostatic balance of the extracellular matrix (ECM) and appears to post a prominent affection for wound healing of PCL. Interleukin-1β (IL-1β) is regarded as a critical factor in acute inflammatory events during ligament injury. METHODS In order to confirm the capability of SCs the response of lysyl oxidases (LOXs) and matrix metalloproteinases (MMPs) to IL-1β, the complex cues of the joint cavity following PCL injury were simulated and the effect of IL-1β on the expression of LOXs and MMPs in PCLfs were investigated. PCLfs in both the mono- and co-culture conditions were treated with IL-1β. Cell lysates were collected from the PCLfs and LOXs and MMP-1, 2, 3 expression quantified using quantitative real-time PCR and western bolting. RESULTS The results indicated that injury alone elevated the expression of LOXs and MMP-1, 2 and 3. But IL-1β significantly decreased the LOX, LOXL1, and LOXL3 expression, and simultaneously increased MMP-1, 2 and 3 expressions in injured PCLfs. Furthermore, co-culture further suppressed LOXs, but stimulated MMP-1, 2 and 3 expressions when subjected to both mechanical injury and IL-1β treatment. This possibly suggests that a number of soluble factors are secreted that act as mediators that amplify the response of SCs. CONCLUSION The results indicated that the SCs could affect the IL-1β-induction of LOXs inhibition and MMPs accumulation, which may be the underlying mechanism of the the poor healing response following PCL injury.
Collapse
Affiliation(s)
- Chunming Xu
- "111" Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China
| | - Qingjia Chi
- "111" Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China; Department of Mechanics and Engineering Structure, Wuhan University of Technology, China
| | - Li Yang
- "111" Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China
| | - K L Paul Sung
- "111" Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China; Departments of Bioengineering and Orthopedics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, United States.
| | - Chunli Wang
- "111" Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
7
|
Oladazimi S, farzanegi P, Azarbayejani MA. Evaluation of ALK5 and MMP13 Expression in the Cartilage Tissue of Rats with Osteoarthritis Rats and Effects of Exercise Training, Ozone and Mesenchymal Stem Cell Therapies on Expression of these Genes. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.1.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
8
|
Wang Y, Dang Z, Cui W, Yang L. Mechanical stretch and hypoxia inducible factor-1 alpha affect the vascular endothelial growth factor and the connective tissue growth factor in cultured ACL fibroblasts. Connect Tissue Res 2017; 58:407-413. [PMID: 27600173 DOI: 10.1080/03008207.2016.1231179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSES The adult human anterior cruciate ligament (ACL) has poor functional healing response. Hypoxia plays an important role in regulating the microenvironment of the joint cavity after ACL injury, however, its role in mechanical injury is yet to be examined fully in ACL fibroblasts. In this study, we used CoCl2 to induce Hypoxia-inducible factor-1α (HIF-1α) in our experimental model to study its affect on matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor (VEGF), and connective tissue growth factor (CTGF) expression in ACL fibroblasts after mechanical stretch. MATERIALS AND METHODS Cell treatments were performed in the stretch chamber in all experimental groups. Quantitative real-time PCR was used to check mRNA expression levels of MMP-2, CTGF, VEGF, and HIF-1α. Western blot was used to detect the HIF-1α production. Enzyme-Linked immunosorbent assay was performed to check the VEGF and CTGF protein contents in supernatant. MMP-2 activity was assayed by gelatin zymography. RESULTS The real-time PCR results show that mechanical stretch or CoCl2 treatment increases the expression of MMP-2, VEGF, CTGF, and HIF-1α; however, the combined effects of mechanical stretch and CoCl2-induced HIF-1α increased MMP-2 production but decreased the VEGF and CTGF expression, compared to the CoCl2 treatment group alone. Western blot analysis and ELISA also confirmed these results. CONCLUSIONS Our results demonstrated that mechanical stretch and CoCl2-induced HIF-1α together increased the level of MMP-2 and decreased the levels of VEGF and CTGF in cultured ACL fibroblasts. The differential expression and production of HIF-1α, VEGF, MMP-2, and CTGF might help to explain the poor healing ability of ACL.
Collapse
Affiliation(s)
- Yequan Wang
- a Institute of Forensic Medicine and Laboratory Medicine , Jining Medical University , Jining , China.,b Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing , China.,c "111" Biomechanics and Tissue Repair Laboratory, Bioengineering College , Chongqing University , Chongqing , China
| | - Zhen Dang
- a Institute of Forensic Medicine and Laboratory Medicine , Jining Medical University , Jining , China
| | - Wen Cui
- a Institute of Forensic Medicine and Laboratory Medicine , Jining Medical University , Jining , China
| | - Li Yang
- b Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College , Chongqing University , Chongqing , China.,c "111" Biomechanics and Tissue Repair Laboratory, Bioengineering College , Chongqing University , Chongqing , China
| |
Collapse
|
9
|
Nakai K, Tanaka H, Yamanaka K, Takahashi Y, Murakami F, Matsuike R, Sekino J, Tanabe N, Morita T, Yamazaki Y, Kawato T, Maeno M. Effects of C-reactive protein on the expression of matrix metalloproteinases and their inhibitors via Fcγ receptors on 3T3-L1 adipocytes. Int J Med Sci 2017; 14:484-493. [PMID: 28539825 PMCID: PMC5441041 DOI: 10.7150/ijms.18059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
The association between obesity and inflammation is well documented in epidemiological studies. Proteolysis of extracellular matrix (ECM) proteins is involved in adipose tissue enlargement, and matrix metalloproteinases (MMPs) collectively cleave all ECM proteins. Here, we examined the effects of C-reactive protein (CRP), an inflammatory biomarker, on the expression of MMPs and tissue inhibitors of metalloproteinases (TIMPs), which are natural inhibitors of MMPs, in adipocyte-differentiated 3T3-L1 cells. We analyzed the expression of Fcγ receptor (FcγR) IIb and FcγRIII, which are candidates for CRP receptors, and the effects of anti-CD16/CD32 antibodies, which can act as FcγRII and FcγRIII blockers on CRP-induced alteration of MMP and TIMP expression. Moreover, we examined the effects of CRP on the activation of mitogen-activated protein kinase (MAPK) signaling, which is involved in MMP and TIMP expression, in the presence or absence of anti-CD16/CD32 antibodies. Stimulation with CRP increased MMP-1, MMP-3, MMP-9, MMP-11, MMP-14, and TIMP-1 expression but did not affect MMP-2, TIMP-2, and TIMP-4 expression; TIMP-3 expression was not detected. Adipocyte-differentiated 3T3-L1cells expressed FcγRIIb and FcγRIII; this expression was upregulated on stimulation with CRP. Anti-CD16/CD32 antibodies inhibited CRP-induced expression of MMPs, except MMP-11, and TIMP-1. CRP induced the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and p38 MAPK but did not affect SAPK/JNK phosphorylation, and Anti-CD16/CD32 attenuated the CRP-induced phosphorylation of p38 MAPK, but not that of ERK1/2. These results suggest that CRP facilitates ECM turnover in adipose tissue by increasing the production of multiple MMPs and TIMP-1 in adipocytes. Moreover, FcγRIIb and FcγRIII are involved in the CRP-induced expression of MMPs and TIMP-1 and the CRP-induced phosphorylation of p38, whereas the FcγR-independent pathway may regulate the CRP-induced MMP-11 expression and the CRP-induced ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Kumiko Nakai
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Kazuhiro Yamanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Yumi Takahashi
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | - Rieko Matsuike
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Jumpei Sekino
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Natsuko Tanabe
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Toyoko Morita
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- The Lion Foundation for Dental Health, Tokyo, Japan
| | | | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masao Maeno
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
10
|
Romero A, Cáceres M, Arancibia R, Silva D, Couve E, Martínez C, Martínez J, Smith PC. Cigarette smoke condensate inhibits collagen gel contraction and prostaglandin E2 production in human gingival fibroblasts. J Periodontal Res 2015; 50:371-9. [PMID: 25073540 DOI: 10.1111/jre.12216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Granulation tissue remodeling and myofibroblastic differentiation are critically important events during wound healing. Tobacco smoking has a detrimental effect in gingival tissue repair. However, studies evaluating the effects of cigarette smoke on these events are lacking. MATERIAL AND METHODS We used gingival fibroblasts cultured within free-floating and restrained collagen gels to simulate the initial and final steps of the granulation tissue phase during tissue repair. Collagen gel contraction was stimulated with serum or transforming growth factor-β1. Cigarette smoke condensate (CSC) was used to evaluate the effects of tobacco smoke on gel contraction. Protein levels of alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor were evaluated through Western blot. Prostaglandin E(2) (PGE(2)) levels were determined through ELISA. Actin organization was evaluated through confocal microscopy. RESULTS CSC reduced collagen gel contraction induced by serum and transforming growth factor-β1 in restrained collagen gels. CSC also altered the development of actin stress fibers in fibroblasts cultured within restrained collagen gels. PGE(2) levels were strongly diminished by CSC in three-dimensional cell cultures. However, other proteins involved in granulation tissue remodeling and myofibroblastic differentiation such as alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor, were unmodified by CSC. CONCLUSIONS CSC may alter the capacity of gingival fibroblasts to remodel and contract a collagen matrix. Inhibition of PGE(2) production and alterations of actin stress fibers in these cells may impair proper tissue maturation during wound healing in smokers.
Collapse
Affiliation(s)
- A Romero
- Dentistry Academic Unit, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Karasawa Y, Tanaka H, Nakai K, Tanabe N, Kawato T, Maeno M, Shimizu N. Tension Force Downregulates Matrix Metalloproteinase Expression and Upregulates the Expression of Their Inhibitors through MAPK Signaling Pathways in MC3T3-E1 cells. Int J Med Sci 2015; 12:905-13. [PMID: 26640410 PMCID: PMC4643081 DOI: 10.7150/ijms.13263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/20/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Matrix metalloproteinases (MMPs), produced by osteoblasts, catalyze the turnover of extracellular matrix (ECM) molecules in osteoid, and the regulation of MMP activity depends on interactions between MMPs and tissue inhibitors of metalloproteinases (TIMPs). We focused on the degradation process of ECM in osteoid that was exposed to mechanical strain, and conducted an in vitro study using MC3T3-E1 osteoblastic cells to examine the effects of tension force (TF) on the expression of MMPs and TIMPs, and activation of mitogen-activated protein kinase (MAPK) pathways. DESIGN Cells were incubated on flexible-bottomed culture plates and stimulated with or without cyclic TF for 24 hours. The expression of MMPs and TIMPs was examined at mRNA and protein levels by real-time RT-PCR and Western blotting, respectively. The phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, and stress-activated protein kinases/c-jun N-terminal kinases (SAPK/JNK) were examined by Western blotting. RESULTS TF decreased the expression of MMP-1, -3, -13 and phosphorylated ERK1/2. In contrast, TF increased the expression of TIMP-2, -3 and phosphorylated SAPK/JNK. The expression of MMP-2, -14, TIMP-1, -4 and phosphorylated p38 MAPK was unaffected by TF. MMP-1, -3 and -13 expression decreased in cells treated with the ERK inhibitor PD98059 compared with untreated control cells. The JNK inhibitor SP600125 inhibited the TF-induced upregulation of TIMP-2 and -3. CONCLUSIONS The results suggest that TF suppresses the degradation process that occurs during ECM turnover in osteoid via decreased production of MMP-1, -3 and -13, and increased production of TIMP-2 and -3 through the MAPK signaling pathways in osteoblasts.
Collapse
Affiliation(s)
- Yoko Karasawa
- 1. Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Hideki Tanaka
- 2. Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan ; 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Kumiko Nakai
- 2. Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan ; 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Natsuko Tanabe
- 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan ; 4. Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Takayuki Kawato
- 2. Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan ; 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masao Maeno
- 2. Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan ; 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Noriyoshi Shimizu
- 5. Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan ; 6. Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
12
|
Zhang Y, Huang W, Jiang J, Xie J, Xu C, Wang C, Yin L, Yang L, Zhou K, Chen P, Sung KP. Influence of TNF-α and biomechanical stress on matrix metalloproteinases and lysyl oxidases expressions in human knee synovial fibroblasts. Knee Surg Sports Traumatol Arthrosc 2014; 22:1997-2006. [PMID: 23377799 DOI: 10.1007/s00167-013-2425-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/21/2013] [Indexed: 01/10/2023]
Abstract
PURPOSE It was reported that not only ACL but also the synovium may be the major regulator of matrix metalloproteinases (MMPs) in synovial fluids after ACL injury. In order to further confirm whether synovium is capable of regulating the microenvironment in the process of ACL injury, the complicated microenvironment of joint cavity after ACL injury was mimicked and the combined effects of mechanical injury and inflammatory factor [tumour necrosis factor-α (TNF-α)] on expressions of lysyl oxidases (LOXs) and MMPs in synovial fibroblasts derived from normal human synovium were studied. METHODS Human normal knee joint synovial fibroblasts were stimulated for 1-6 h with mechanical stretch and inflammatory factor (TNF-α). Total RNA was harvested, reverse transcribed and assessed by real-time polymerase chain reaction for the expression of LOXs and MMP-1, 2, 3 messenger RNAs. MMP-2 activity was assayed from the collected culture media samples using zymography. RESULTS Compared to control group, our results showed that 6% physiological stretch increased MMP-2 and LOXs (except LOXL-3), decreased MMP-1 and MMP-3; injurious stretch (12%) decreased LOXs (except LOXL-2)and increased MMP-1, 2 and 3; the combination of injurious stretch and TNF-α decreased LOXs and increased MMP-1, 2 and 3 in synovial fibroblasts in a synergistical manner. CONCLUSION This study demonstrated that combination of mechanical injury and inflammatory factors up-regulated the expressions of MMPs and down-regulated the expressions of LOXs in synovial fibroblasts, eventually alter the balance of tissue healing. Thus, synovium may be involved in regulating the microenvironment of joint cavity. Based on the mechanism, early interventions to inhibit the production of MMPs or promote the production of LOXs in the synovial fibroblasts should be performed to facilitate the healing of tissue.
Collapse
Affiliation(s)
- Yanjun Zhang
- "111" Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Park JY, Park JJ, Jeon S, Doo AR, Kim SN, Lee H, Chae Y, Maixner W, Lee H, Park HJ. From peripheral to central: the role of ERK signaling pathway in acupuncture analgesia. THE JOURNAL OF PAIN 2014; 15:535-49. [PMID: 24524846 DOI: 10.1016/j.jpain.2014.01.498] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 01/04/2023]
Abstract
UNLABELLED Despite accumulating evidence of the clinical effectiveness of acupuncture, its mechanism remains largely unclear. We assume that molecular signaling around the acupuncture needled area is essential for initiating the effect of acupuncture. To determine possible bio-candidates involved in the mechanisms of acupuncture and investigate the role of such bio-candidates in the analgesic effects of acupuncture, we conducted 2 stepwise experiments. First, a genome-wide microarray of the isolated skin layer at the GB34-equivalent acupoint of C57BL/6 mice 1 hour after acupuncture found that a total of 236 genes had changed and that extracellular signal-regulated kinase (ERK) activation was the most prominent bio-candidate. Second, in mouse pain models using formalin and complete Freund adjuvant, we found that acupuncture attenuated the nociceptive behavior and the mechanical allodynia; these effects were blocked when ERK cascade was interrupted by the mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) inhibitor U0126 (.8 μg/μL). Based on these results, we suggest that ERK phosphorylation following acupuncture needling is a biochemical hallmark initiating the effect of acupuncture including analgesia. PERSPECTIVE This article presents the novel evidence of the local molecular signaling in acupuncture analgesia by demonstrating that ERK activation in the skin layer contributes to the analgesic effect of acupuncture in a mouse pain model. This work improves our understanding of the scientific basis underlying acupuncture analgesia.
Collapse
Affiliation(s)
- Ji-Yeun Park
- Studies of Translational Acupuncture Research, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jongbae J Park
- Asian Medicine and Acupuncture Research, Department of Physical Medicine and Rehabilitation, Chapel Hill, North Carolina; Center for Pain Research and Innovation, UNC School of Dentistry, Chapel Hill, North Carolina
| | - Songhee Jeon
- Dongguk University Research Institute of Biotechnology, Seoul, Republic of Korea
| | - Ah-Reum Doo
- Studies of Translational Acupuncture Research, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Nam Kim
- Studies of Translational Acupuncture Research, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyangsook Lee
- Studies of Translational Acupuncture Research, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Younbyoung Chae
- Studies of Translational Acupuncture Research, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - William Maixner
- Center for Pain Research and Innovation, UNC School of Dentistry, Chapel Hill, North Carolina
| | - Hyejung Lee
- Studies of Translational Acupuncture Research, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Studies of Translational Acupuncture Research, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Republic of Korea; Carolina Asia Center, UNC-Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
14
|
Abstract
Fibrosis is an intrinsic response to chronic injury, maintaining organ integrity when extensive necrosis or apoptosis occurs. With protracted damage, fibrosis can progress toward excessive scarring and organ failure, as in liver cirrhosis. To date, antifibrotic treatment of fibrosis represents an unconquered area for drug development, with enormous potential but also high risks. Preclinical research has yielded numerous targets for antifibrotic agents, some of which have entered early-phase clinical studies, but progress has been hampered due to the relative lack of sensitive and specific biomarkers to measure fibrosis progression or reversal. Here we focus on antifibrotic approaches for liver that address specific cell types and functional units that orchestrate fibrotic wound healing responses and have a sound preclinical database or antifibrotic activity in early clinical trials. We also touch upon relevant clinical study endpoints, optimal study design, and developments in fibrosis imaging and biomarkers.
Collapse
Affiliation(s)
- Detlef Schuppan
- Institute of Molecular and Translational Medicine and Department of Medicine I, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| | | |
Collapse
|
15
|
Yan Y, Singh GK, Zhang F, Wang P, Liu W, Zhong L, Yang L. Comparative study of normal and rheumatoid arthritis fibroblast-like synoviocytes proliferation under cyclic mechanical stretch: role of prostaglandin E2. Connect Tissue Res 2011; 53:246-54. [PMID: 22149896 DOI: 10.3109/03008207.2011.632828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fibroblast-like synoviocytes (FLSs) are one of the main contributors of prostaglandin E(2) (PGE(2)) in the hyperplastic synovium of rheumatoid arthritis (RA) patients. cyclooxygenase-2 (COX-2)/PGE(2) pathway is involved in the proliferation of several cell types. We have previously shown that mechanical stretch affects COX-2 and PGE(2) production in human RA FLSs; however, its role in cell proliferation remains to be elucidated. In this study, a comparison is drawn between human RA and normal FLSs to understand the role of mechanical stretch and PGE(2) on the proliferation of FLSs. The results showed that physiological level (6%, 1 Hz) of cyclic mechanical stretch significantly decreased the proliferation of RA FLSs but not normal FLSs, while the induction of apoptosis was not observed by stretch in either RA or normal FLSs. IL-1β (5 ng/ml)-induced COX-2/PGE(2) levels are downregulated by stretch in RA FLSs only. Further investigation showed that high concentration (100 and 500 ng/ml) of PGE(2) significantly induced cell proliferation only in RA FLSs, and this induction failed to be suppressed by stretch. In conclusion, this study demonstrated that elevated levels of PGE(2) in the synovial cavity are involved in the proliferation of RA FLSs, and cyclic mechanical stretch regulates the RA synovial hyperplasia.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Biorheological Science and Technology of the Ministry of Education, College of Bioengineering, Chongqing University, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Tang Z, Xue R, Singh GK, Liu W, Lv Y, Yang L. Differential response to CoCl2-stimulated hypoxia on HIF-1α, VEGF, and MMP-2 expression in ligament cells. Mol Cell Biochem 2011; 360:235-42. [PMID: 21938405 DOI: 10.1007/s11010-011-1061-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 09/08/2011] [Indexed: 01/08/2023]
Abstract
The adult human anterior cruciate ligament (ACL) has a poor functional healing response, whereas the medial collateral ligament (MCL) does not. The difference in intrinsic properties of these ligament cells can be due to their different response to their located microenvironment. Hypoxia is a key environmental regulator after ligament injury. In this study, we investigated the differential response of ACL and MCL fibroblasts to hypoxia on hypoxia-inducible factor-1α, vascular endothelial growth factor, and matrix metalloproteinase-2 (MMP-2) expression. Our results show that ACL cells responded to hypoxia by up-regulating the HIF-1α expression significantly as compared to MCL cells. We also observed that in MCL fibroblasts response to hypoxia resulted in increase in expression of VEGF as compared to ACL fibroblasts. After hypoxia treatment, mRNA and protein levels of MMP-2 increased in both ACL and MCL. Furthermore we found in ACL pro-MMP-2 was converted more into active form. However, hypoxia decreased the percentage of wound closure for both ligament cells and had a greater effect on ACL fibroblasts. These results demonstrate that ACL and MCL fibroblasts respond differently under the hypoxic conditions suggesting that these differences in intrinsic properties may contribute to their different healing responses and abilities.
Collapse
Affiliation(s)
- Yequan Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Tang Z, Xue R, Singh GK, Shi K, Lv Y, Yang L. Combined effects of TNF-α, IL-1β, and HIF-1α on MMP-2 production in ACL fibroblasts under mechanical stretch: an in vitro study. J Orthop Res 2011; 29:1008-14. [PMID: 21344498 DOI: 10.1002/jor.21349] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/09/2010] [Indexed: 02/04/2023]
Abstract
The dynamics between inflammatory factors, mechanical stress, and healing factors, in an intra-articular joint, are very complex after injury. Injury to intra-articular tissue [anterior cruciate ligament (ACL), synovium] results in hypoxia, accumulation of various pro-inflammatory factors, cytokines, and metalloproteases. Although the presence of increased amounts of matrix-metalloproteinases (MMP) in the joint fluid after knee injury is considered the key factor for ACL poor healing ability; however, the exact role of collective participants of the joint fluid on MMP-2 activity and production has not been fully studied yet. To investigate the combined effects of mechanical injury, inflammation and hypoxia induced factor-1α (HIF-1α) on induction of MMP-2; we mimicked the microenvironment of joint cavity after ACL injury. The results show that TNF-α and IL-1β elevate the activity of MMP-2 in a dose- and time-dependent manner. In addition, mechanical stretch further enhances the MMP-2 protein levels with TNF-α, IL-1β, and their mixture. CoCl(2) -induced HIF-1α (100 and 500 µM) also increases the levels and activity of MMP-2. Mechanical stretch has a strong additional effect on MMP-2 production with HIF-1α. Our results conclude that mechanical injury, HIF-1α and inflammatory factors collectively induce increased MMP-2 production in ACL fibroblasts, which was inhibited by NF-κB pathway inhibitor (Bay-11-7082).
Collapse
Affiliation(s)
- Yequan Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang P, You X, Yan Y, Singh GK, Li X, Zhou W, Liu W, Zhang F, Lv Y, Yang L. Cyclic mechanical stretch downregulates IL-1β-induced COX-2 expression and PGE(2) production in rheumatoid arthritis fibroblast-like synoviocytes. Connect Tissue Res 2011; 52:190-7. [PMID: 20887233 DOI: 10.3109/03008207.2010.508853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) are one of the primary sources of inflammatory cytokines, including prostaglandins (PGs) and matrix metalloproteinases (MMPs) in joints that are detrimental to the bone, cartilage, and the surrounding tissue. Many studies, in recent years, have shown that physiotherapies play a beneficial effect on the maintenance of joint homeostasis in RA; however, the underlying mechanisms involved are still not fully elucidated. This study was performed to investigate cellular mechanism of mechanical strain-mediated actions in RA-FLS. RA-FLS were grown on collagen-coated silicone membranes and were exposed to 6% cyclic mechanical stretch at a frequency of 0.5 Hz for different times in the presence/absence of IL-1β. Real-time PCR and western blotting were used to detect the mRNA and protein level of cyclooxygenase-2 (COX-2) and MMP-1. The production of prostaglandin E(2) (PGE(2)) was quantified by ELISA method. Our results showed that 6% cyclic mechanical stretch significantly inhibited IL-1β-induced MMP-1 (gene) and COX-2 (gene and protein) expression at 15, 40, and 80 min. It also downregulated the IL-1β-induced production of PGE(2). Further investigation of nuclear factor kappa B (NF-κB) signal pathway-related effectors IκB-α and IκB-β revealed that 6% cyclic stretch inhibited their IL-1β-induced degradation in cytoplasm as well as reversed their gene transcription levels. Our data suggest that gentle level of cyclic mechanical stretch exerts a protective effect on RA-FLS as it downregulates the level of MMP-1 protease, COX-2, and proinflammatory PGE(2). The underlying mechanism appears to be, in part, executed through NF-κB and its upstream effectors.
Collapse
Affiliation(s)
- Ping Wang
- Key Laboratory of Biorheology Science and Technology under the ministry of Education, College of Bioengineering, Chongqing University , Chongqing , PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|