1
|
Wang H, Weng X, Chen Y, Mao S, Gao Y, Wu Q, Huang Y, Guan X, Xu Z, Lai Y. Biomimetic concentric microgrooved titanium surfaces influence bone marrow-derived mesenchymal stem cell osteogenic differentiation via H3K4 trimethylation epigenetic regulation. Dent Mater J 2024; 43:683-692. [PMID: 39135261 DOI: 10.4012/dmj.2023-327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Material surface micromorphology can modulate cellular behavior and promote osteogenic differentiation through cytoskeletal rearrangement. Bone reconstruction requires precise regulation of gene expression in cells, a process governed by epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling. We constructed osteon-mimetic concentric microgrooved titanium surfaces with different groove sizes and cultured bone marrow-derived mesenchymal stem cells (BMSCs) on the material surfaces to study how they regulate cell biological behavior and osteogenic differentiation through epigenetics. We found that the cells arranged in concentric circles along the concentric structure in the experimental group, and the concentric microgrooved surface did not inhibit cell proliferation. The results of a series of osteogenic differentiation experiments showed that the concentric microgrooves facilitated calcium deposition and promoted osteogenic differentiation of the BMSCs. Concentric microgrooved titanium surfaces that were 30 μm wide and 10 μm deep promoted osteogenic differentiation of BMSC by increasing WDR5 expression via H3K4 trimethylation upregulation.
Collapse
Affiliation(s)
- Hong Wang
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
- Stomatological Hospital of Xiamen Medical college
| | - Xinze Weng
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| | - Yan Chen
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| | - Shunjie Mao
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| | - Yuerong Gao
- Department of Stomatology of The Third Affiliated Hospital of Xi'an Medical University
| | - Qinglin Wu
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| | - Yanling Huang
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| | - Xin Guan
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| | - Zhiqiang Xu
- Department of Stomatology, Affiliated Hospital of Putian University
| | - Yingzhen Lai
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College
| |
Collapse
|
2
|
Zhong Y, Zhou X, Pan Z, Zhang J, Pan J. Role of epigenetic regulatory mechanisms in age-related bone homeostasis imbalance. FASEB J 2024; 38:e23642. [PMID: 38690719 DOI: 10.1096/fj.202302665r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Alterations to the human organism that are brought about by aging are comprehensive and detrimental. Of these, an imbalance in bone homeostasis is a major outward manifestation of aging. In older adults, the decreased osteogenic activity of bone marrow mesenchymal stem cells and the inhibition of bone marrow mesenchymal stem cell differentiation lead to decreased bone mass, increased risk of fracture, and impaired bone injury healing. In the past decades, numerous studies have reported the epigenetic alterations that occur during aging, such as decreased core histones, altered DNA methylation patterns, and abnormalities in noncoding RNAs, which ultimately lead to genomic abnormalities and affect the expression of downstream signaling osteoporosis treatment and promoter of fracture healing in older adults. The current review summarizes the impact of epigenetic regulation mechanisms on age-related bone homeostasis imbalance.
Collapse
Affiliation(s)
- Yunyu Zhong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zijian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiankang Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Yi SJ, Lim J, Kim K. Exploring epigenetic strategies for the treatment of osteoporosis. Mol Biol Rep 2024; 51:398. [PMID: 38453825 DOI: 10.1007/s11033-024-09353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The worldwide trend toward an aging population has resulted in a higher incidence of chronic conditions, such as osteoporosis. Osteoporosis, a prevalent skeletal disorder characterized by decreased bone mass and increased fracture risk, encompasses primary and secondary forms, each with distinct etiologies. Mechanistically, osteoporosis involves an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Current pharmacological interventions for osteoporosis, such as bisphosphonates, denosumab, and teriparatide, aim to modulate bone turnover and preserve bone density. Hormone replacement therapy and lifestyle modifications are also recommended to manage the condition. While current medications offer therapeutic options, they are not devoid of limitations. Recent studies have highlighted the importance of epigenetic mechanisms, including DNA methylation and histone modifications, in regulating gene expression during bone remodeling. The use of epigenetic drugs, or epidrugs, to target these mechanisms offers a promising avenue for therapeutic intervention in osteoporosis. In this review, we comprehensively examine the recent advancements in the application of epidrugs for treating osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jaeho Lim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
4
|
Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W, Jiang P. Epigenetic Regulation of Autophagy in Bone Metabolism. FUNCTION 2024; 5:zqae004. [PMID: 38486976 PMCID: PMC10935486 DOI: 10.1093/function/zqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Qianqian Wang
- Department of Pediatric Intensive Care Unit, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Hongjia Xue
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People’s Hospital, Jining 272000, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan 250000, China
| | - Fengfeng Li
- Department of Neurosurgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou 277500, China
| | - Weiliang Pan
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| |
Collapse
|
5
|
Yi SJ, Jang YJ, Lee S, Cho SJ, Kang K, Park JI, Chae HJ, Kim HR, Kim K. TMBIM6 deficiency leads to bone loss by accelerating osteoclastogenesis. Redox Biol 2023; 64:102804. [PMID: 37399733 PMCID: PMC10336580 DOI: 10.1016/j.redox.2023.102804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
TMBIM6 is an endoplasmic reticulum (ER) protein that modulates various physiological and pathological processes, including metabolism and cancer. However, its involvement in bone remodeling has not been investigated. In this study, we demonstrate that TMBIM6 serves as a crucial negative regulator of osteoclast differentiation, a process essential for bone remodeling. Our investigation of Tmbim6-knockout mice revealed an osteoporotic phenotype, and knockdown of Tmbim6 inhibited the formation of multinucleated tartrate-resistant acid phosphatase-positive cells, which are characteristic of osteoclasts. Transcriptome and immunoblot analyses uncovered that TMBIM6 exerts its inhibitory effect on osteoclastogenesis by scavenging reactive oxygen species and preventing p65 nuclear localization. Additionally, TMBIM6 depletion was found to promote p65 localization to osteoclast-related gene promoters. Notably, treatment with N-acetyl cysteine, an antioxidant, impeded the osteoclastogenesis induced by TMBIM6-depleted cells, supporting the role of TMBIM6 in redox regulation. Furthermore, we discovered that TMBIM6 controls redox regulation via NRF2 signaling pathways. Our findings establish TMBIM6 as a critical regulator of osteoclastogenesis and suggest its potential as a therapeutic target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - You-Jee Jang
- Department of Biomedical Laboratory Science, Honam University, Gwangju, Republic of Korea
| | - Seokchan Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Han-Jung Chae
- School of Pharmacy and New Drug Development Research Institute, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
6
|
Smith N, Shirazi S, Cakouros D, Gronthos S. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci 2023; 24:ijms24076499. [PMID: 37047469 PMCID: PMC10095074 DOI: 10.3390/ijms24076499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases.
Collapse
Affiliation(s)
- Nicholas Smith
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Suzanna Shirazi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| |
Collapse
|
7
|
Chen Y, Sun Y, Xue X, Ma H. Comprehensive analysis of epigenetics mechanisms in osteoporosis. Front Genet 2023; 14:1153585. [PMID: 37056287 PMCID: PMC10087084 DOI: 10.3389/fgene.2023.1153585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic modification pertains to the alteration of genetic-expression, which could be transferred to the next generations, without any alteration in the fundamental DNA sequence. Epigenetic modification could include various processes such as DNA methylation, histone alteration, non-coding RNAs (ncRNAs), and chromatin adjustment are among its primary operations. Osteoporosis is a metabolic disorder that bones become more fragile due to the decrease in mineral density, which could result in a higher risk of fracturing. Recently, as the investigation of the causal pathology of osteoporosis has been progressed, remarkable improvement has been made in epigenetic research. Recent literatures have illustrated that epigenetics is estimated to be one of the most contributing factors to the emergence and progression of osteoporosis. This dissertation primarily focuses on indicating the research progresses of epigenetic mechanisms and also the regulation of bone metabolism and the pathogenesis of osteoporosis in light of the significance of epigenetic mechanisms. In addition, it aims to provide new intelligence for the treatment of diseases related to bone metabolism.
Collapse
Affiliation(s)
- Yuzhu Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yumiao Sun
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiangyu Xue
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Huanzhi Ma
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Huanzhi Ma,
| |
Collapse
|
8
|
Long Z, Dou P, Cai W, Mao M, Wu R. MiR-181a-5p promotes osteogenesis by targeting BMP3. Aging (Albany NY) 2023; 15:734-747. [PMID: 36734882 PMCID: PMC9970307 DOI: 10.18632/aging.204505] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
High-throughput microRNA (miRNA) sequencing of osteoporosis was analyzed from the Gene Expression Omnibus (GEO) database to investigate specific microRNAs that control osteogenesis. MiR-181a-5p was differentially expressed among healthy subjects and those with osteoporosis. Inhibitors and mimics were transfected into cells to modulate miR-181a-5p levels to examine the role in MC3T3-E1 functions. Alkaline phosphatase (ALP) staining and Alizarin Red S (ARS) staining were used for morphological detection, and proteins of ALP and Runt-related transcription factor 2 (RUNX2), as osteogenesis markers, were detected. During the osteogenic differentiation of MC3T3-E1, the transcription level of miR-181a-5p was significantly increased. The inhibition of miR-181a-5p suppressed MC3T3-E1 osteogenic differentiation, whereas its overexpression functioned oppositely. Consistently, the miR-181a-5p antagomir aggravated osteoporosis in old mice. Additionally, we predicted potential target genes via TargetScan and miRDB and identified bone morphogenetic protein 3 (BMP3) as the target gene. Moreover, the reduced expression of miR-181a-5p was validated in our hospitalized osteoporotic patients. These findings have substantial implications for the strategies targeting miR-181a-5p to prevent osteoporosis and potential related fractures.
Collapse
Affiliation(s)
- Ze Long
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weiliang Cai
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Minzhi Mao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ren Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Bae S, Kim K, Kang K, Kim H, Lee M, Oh B, Kaneko K, Ma S, Choi JH, Kwak H, Lee EY, Park SH, Park-Min KH. RANKL-responsive epigenetic mechanism reprograms macrophages into bone-resorbing osteoclasts. Cell Mol Immunol 2023; 20:94-109. [PMID: 36513810 PMCID: PMC9794822 DOI: 10.1038/s41423-022-00959-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/03/2022] [Indexed: 12/15/2022] Open
Abstract
Monocyte/macrophage lineage cells are highly plastic and can differentiate into various cells under different environmental stimuli. Bone-resorbing osteoclasts are derived from the monocyte/macrophage lineage in response to receptor activator of NF-κB ligand (RANKL). However, the epigenetic signature contributing to the fate commitment of monocyte/macrophage lineage differentiation into human osteoclasts is largely unknown. In this study, we identified RANKL-responsive human osteoclast-specific superenhancers (SEs) and SE-associated enhancer RNAs (SE-eRNAs) by integrating data obtained from ChIP-seq, ATAC-seq, nuclear RNA-seq and PRO-seq analyses. RANKL induced the formation of 200 SEs, which are large clusters of enhancers, while suppressing 148 SEs in macrophages. RANKL-responsive SEs were strongly correlated with genes in the osteoclastogenic program and were selectively increased in human osteoclasts but marginally presented in osteoblasts, CD4+ T cells, and CD34+ cells. In addition to the major transcription factors identified in osteoclasts, we found that BATF binding motifs were highly enriched in RANKL-responsive SEs. The depletion of BATF1/3 inhibited RANKL-induced osteoclast differentiation. Furthermore, we found increased chromatin accessibility in SE regions, where RNA polymerase II was significantly recruited to induce the extragenic transcription of SE-eRNAs, in human osteoclasts. Knocking down SE-eRNAs in the vicinity of the NFATc1 gene diminished the expression of NFATc1, a major regulator of osteoclasts, and osteoclast differentiation. Inhibiting BET proteins suppressed the formation of some RANKL-responsive SEs and NFATc1-associated SEs, and the expression of SE-eRNA:NFATc1. Moreover, SE-eRNA:NFATc1 was highly expressed in the synovial macrophages of rheumatoid arthritis patients exhibiting high-osteoclastogenic potential. Our genome-wide analysis revealed RANKL-inducible SEs and SE-eRNAs as osteoclast-specific signatures, which may contribute to the development of osteoclast-specific therapeutic interventions.
Collapse
Affiliation(s)
- Seyeon Bae
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kibyeong Kim
- Department of Biological Science, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, 3116, Republic of Korea
| | - Haemin Kim
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Minjoon Lee
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Brian Oh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Kaichi Kaneko
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Sungkook Ma
- Department of Biological Science, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Sung Ho Park
- Department of Biological Science, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10021, USA.
| |
Collapse
|
10
|
Regulation of human ZNF687, a gene associated with Paget's disease of bone. Int J Biochem Cell Biol 2023; 154:106332. [PMID: 36372390 DOI: 10.1016/j.biocel.2022.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Mutations in Zinc finger 687 (ZNF687) were associated with Paget's disease of bone (PDB), a disease characterized by increased bone resorption and excessive bone formation. It was suggested that ZNF687 plays a role in bone differentiation and development. However, the mechanisms involved in ZNF687 regulation remain unknown. This study aimed to obtain novel knowledge regarding ZNF687 transcriptional and epigenetic regulation. Through in silico analysis, we hypothesized three ZNF687 promoter regions located upstream exon 1 A, 1B, and 1 C and denominated promoter regions 1, 2, and 3, respectively. Their functionality was confirmed by luciferase activity assays and positive/negative regulatory regions were identified using promoter deletions constructs. In silico analysis revealed a high density of CpG islands in these promoter regions and in vitro methylation suppressed promoters' activity. Using bioinformatic approaches, bone-associated transcription factor binding sites containing CpG dinucleotides were identified, including those for NFκB, PU.1, DLX5, and SOX9. By co-transfection in HEK293 and hFOB cells, we found that DLX5 specifically activated ZNF687 promoter region 1, and its methylation impaired DLX5-driven promoter stimulation. NFκB repressed and activated promoter regions 1 and 2, respectively, and these activities were affected by methylation. PU.1 induced ZNF687 promoter region 1 which was affected by methylation. SOX9 differentially regulated ZNF687 promoters in HEK293 and hFOB cells that were impaired after methylation. In conclusion, this study provides novel insights into ZNF687 regulation by demonstrating that NFκB, PU.1, DLX5, and SOX9 are regulators of ZNF687 promoters, and DNA methylation influences their activity. The contribution of the dysregulation of these mechanisms in PDB should be further elucidated.
Collapse
|
11
|
Raik S, Thakur R, Rattan V, Kumar N, Pal A, Bhattacharyya S. Temporal Modulation of DNA Methylation and Gene Expression in Monolayer and 3D Spheroids of Dental Pulp Stem Cells during Osteogenic Differentiation: A Comparative Study. Tissue Eng Regen Med 2022; 19:1267-1282. [PMID: 36221017 PMCID: PMC9679125 DOI: 10.1007/s13770-022-00485-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells are being used for various regenerative applications in past decades. This study chronicled a temporal profile of the transcriptional pattern and promoter methylation status of the osteogenic related gene in dental pulp stem cells (DPSCs) derived from 3-dimensional spheroid culture (3D) vis a vis 2-dimensional (2D) monolayer culture upon osteogenic induction. METHODS Biomimetic properties of osteogenesis were determined by alkaline phosphatase assay and alizarin red staining. Gene expression and promoter methylation status of osteogenic genes such as runt-related transcription factor-2, collagen1α1, osteocalcin (OCN), and DLX5 (distal-homeobox) were performed by qPCR assay and bisulfite sequencing, respectively. Furthermore, µ-Computed tomography (micro-CT) was performed to examine the new bone formation in critical-sized rat calvarial bone defect model. RESULTS Our results indicated a greater inclination of spheroid culture-derived DPSCs toward osteogenic lineage than the monolayer culture. The bisulfite sequencing of the promoter region of osteogenic genes revealed sustenance of low methylation levels in DPSCs during the progression of osteogenic differentiation. However, the significant difference in the methylation pattern between 2D and 3D derived DPSCs were identified only for OCN gene promoter. We observed differences in the mRNA expression pattern of epigenetic writers such as DNA methyltransferases (DNMTs) and methyl-cytosine dioxygenases (TET) between the two culture conditions. Further, the DPSC spheroids showed enhanced new bone formation ability in an animal model of bone defect compared to the cells cultivated in a 2D platform which further substantiated our in-vitro observations. CONCLUSION The distinct cellular microenvironment induced changes in DNA methylation pattern and expression of epigenetic regulators such as DNMTs and TETs genes may lead to increase expression of osteogenic markers in 3D spheroid culture of DPSCs which make DPSCs spheroids suitable for osteogenic regeneration compared to monolayers.
Collapse
Affiliation(s)
- Shalini Raik
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Reetu Thakur
- Department of Biochemistry, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vidya Rattan
- Unit of Oral and Maxillofacial Surgery, Department of Oral Health Sciences, PGIMER, Chandigarh, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Arnab Pal
- Department of Biochemistry, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
12
|
Methyltransferase Setdb1 Promotes Osteoblast Proliferation by Epigenetically Silencing Macrod2 with the Assistance of Atf7ip. Cells 2022; 11:cells11162580. [PMID: 36010655 PMCID: PMC9406310 DOI: 10.3390/cells11162580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Bone loss caused by mechanical unloading is a threat to prolonged space flight and human health. Epigenetic modifications play a crucial role in varied biological processes, but the mechanism of histone modification on unloading-induced bone loss has rarely been studied. Here, we discovered for the first time that the methyltransferase Setdb1 was downregulated under the mechanical unloading both in vitro and in vivo so as to attenuate osteoblast proliferation. Furthermore, we found these interesting processes depended on the repression of Macrod2 expression triggered by Setdb1 catalyzing the formation of H3K9me3 in the promoter region. Mechanically, we revealed that Macrod2 was upregulated under mechanical unloading and suppressed osteoblast proliferation through the GSK-3β/β-catenin signaling pathway. Moreover, Atf7ip cooperatively contributed to osteoblast proliferation by changing the localization of Setdb1 under mechanical loading. In summary, this research elucidated the role of the Atf7ip/Setdb1/Macrod2 axis in osteoblast proliferation under mechanical unloading for the first time, which can be a potential protective strategy against unloading-induced bone loss.
Collapse
|
13
|
Chen J, Lazarenko OP, Carvalho E, Blackburn ML, Shankar K, Wankhade UD, Børsheim E. Short-Term Increased Physical Activity During Early Life Affects High-Fat Diet-Induced Bone Loss in Young Adult Mice. JBMR Plus 2021; 5:e10508. [PMID: 34258504 PMCID: PMC8260814 DOI: 10.1002/jbm4.10508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/22/2021] [Accepted: 04/21/2021] [Indexed: 01/01/2023] Open
Abstract
Mechanical stresses associated with physical activity (PA) have beneficial effects on increasing BMD and improving bone quality. However, a high-fat diet (HFD) and obesity tend to have negative effects on bone, by increasing bone marrow adiposity leading to increased excretion of proinflammatory cytokines, which activate RANKL-induced bone resorption. In the current study, whether short-term increased PA via access to voluntary wheel running during early life has persistent and protective effects on HFD-induced bone resorption was investigated. Sixty 4-week-old male C57BL6/J mice were divided into two groups postweaning: without or with PA (access to voluntary running wheel 7-8 km/day) for 4 weeks. After 4 weeks with or without PA, mice were further subdivided into control diet or HFD groups for 8 weeks, and then all animals were switched back to control diet for an additional 4 weeks. Mice from the HFD groups were significantly heavier and obese; however, after 4 weeks of additional control diet their body weights returned to levels of mice on continuous control diet. Using μ-CT and confirmed by pQCT of tibias and spines ex vivo, it was determined that bone volume and trabecular BMD were significantly increased with PA in control diet animals compared with sedentary animals without access to wheels, and such anabolic effects of PA on bone were sustained after ceasing PA in adult mice. Eight weeks of a HFD deteriorated bone development in mice. Unexpectedly, early-life PA did not prevent persistent effects of HFD on deteriorating bone quality; in fact, it exacerbated a HFD-induced inflammation, osteoclastogenesis, and trabecular bone loss in adult mice. In accordance with these data, signal transduction studies revealed that a HFD-induced Ezh2, DNA methyltransferase 3a, and nuclear factor of activated T-cells 1 expression were amplified in nonadherent hematopoietic cells. In conclusion, short-term increased PA in early life is capable of increasing bone mass; however, it alters the HFD-induced bone marrow hematopoietic cell-differentiation program to exacerbate increased bone resorption if PA is halted. © 2021 Arkansas Children's Nutrition Center. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jin‐Ran Chen
- Arkansas Children's Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Oxana P Lazarenko
- Arkansas Children's Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Eugenia Carvalho
- Arkansas Children's Research InstituteLittle RockARUSA
- Department of GeriatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Michael L Blackburn
- Arkansas Children's Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Kartik Shankar
- Arkansas Children's Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Present address:
Department of Pediatrics, Section of NutritionUniversity of Colorado School of MedicineAuroraCOUSA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Elisabet Børsheim
- Arkansas Children's Nutrition CenterLittle RockARUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Arkansas Children's Research InstituteLittle RockARUSA
- Department of GeriatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
14
|
Mun SH, Jastrzebski S, Kalinowski J, Zeng S, Oh B, Bae S, Eugenia G, Khan NM, Drissi H, Zhou P, Shin B, Lee S, Lorenzo J, Park‐Min K. Sexual Dimorphism in Differentiating Osteoclast Precursors Demonstrates Enhanced Inflammatory Pathway Activation in Female Cells. J Bone Miner Res 2021; 36:1104-1116. [PMID: 33567098 PMCID: PMC11140852 DOI: 10.1002/jbmr.4270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Sexual dimorphism of the skeleton is well documented. At maturity, the male skeleton is typically larger and has a higher bone density than the female skeleton. However, the underlying mechanisms for these differences are not completely understood. In this study, we examined sexual dimorphism in the formation of osteoclasts between cells from female and male mice. We found that the number of osteoclasts in bones was greater in females. Similarly, in vitro osteoclast differentiation was accelerated in female osteoclast precursor (OCP) cells. To further characterize sex differences between female and male osteoclasts, we performed gene expression profiling of cultured, highly purified, murine bone marrow OCPs that had been treated for 3 days with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). We found that 125 genes were differentially regulated in a sex-dependent manner. In addition to genes that are contained on sex chromosomes, transcriptional sexual dimorphism was found to be mediated by genes involved in innate immune and inflammatory response pathways. Furthermore, the NF-κB-NFATc1 axis was activated earlier in female differentiating OCPs, which partially explains the differences in transcriptomic sexual dimorphism in these cells. Collectively, these findings identify multigenic sex-dependent intrinsic difference in differentiating OCPs, which results from an altered response to osteoclastogenic stimulation. In humans, these differences could contribute to the lower peak bone mass and increased risk of osteoporosis that females demonstrate relative to males. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Se Hwan Mun
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York NY USA
| | - Sandra Jastrzebski
- Department of Medicine University of Connecticut Health Farmington CT USA
| | - Judy Kalinowski
- Department of Medicine University of Connecticut Health Farmington CT USA
| | - Steven Zeng
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York NY USA
| | - Brian Oh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York NY USA
| | - Seyeon Bae
- Department of Medicine Weill Cornell Medical College New York NY USA
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York NY USA
| | - Giannopoulou Eugenia
- Biological Sciences Department New York City College of Technology, City University of New York Brooklyn NY USA
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York NY USA
| | - Nazir M Khan
- Department of Orthopaedics School of Medicine, Emory University Atlanta GA USA
| | - Hicham Drissi
- Department of Orthopaedics School of Medicine, Emory University Atlanta GA USA
| | - Ping Zhou
- Feil Family Brain & Mind Research Institute (BMRI), Weill Cornell Medical College New York NY USA
| | - Bongjin Shin
- Center on Aging University of Connecticut Health Farmington CT USA
| | - Sun‐Kyeong Lee
- Center on Aging University of Connecticut Health Farmington CT USA
| | - Joseph Lorenzo
- Department of Orthopaedic Surgery University of Connecticut Health Farmington CT USA
- Department of Medicine University of Connecticut Health Farmington CT USA
| | - Kyung‐Hyun Park‐Min
- BCMB Allied Program Weill Cornell Graduate School of Medical Sciences New York NY USA
- Department of Medicine Weill Cornell Medical College New York NY USA
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York NY USA
| |
Collapse
|
15
|
Yi SJ, Jang YJ, Kim HJ, Lee K, Lee H, Kim Y, Kim J, Hwang SY, Song JS, Okada H, Park JI, Kang K, Kim K. The KDM4B-CCAR1-MED1 axis is a critical regulator of osteoclast differentiation and bone homeostasis. Bone Res 2021; 9:27. [PMID: 34031372 PMCID: PMC8144413 DOI: 10.1038/s41413-021-00145-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Bone undergoes a constant and continuous remodeling process that is tightly regulated by the coordinated and sequential actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Recent studies have shown that histone demethylases are implicated in osteoblastogenesis; however, little is known about the role of histone demethylases in osteoclast formation. Here, we identified KDM4B as an epigenetic regulator of osteoclast differentiation. Knockdown of KDM4B significantly blocked the formation of tartrate-resistant acid phosphatase-positive multinucleated cells. Mice with myeloid-specific conditional knockout of KDM4B showed an osteopetrotic phenotype due to osteoclast deficiency. Biochemical analysis revealed that KDM4B physically and functionally associates with CCAR1 and MED1 in a complex. Using genome-wide chromatin immunoprecipitation (ChIP)-sequencing, we revealed that the KDM4B–CCAR1–MED1 complex is localized to the promoters of several osteoclast-related genes upon receptor activator of NF-κB ligand stimulation. We demonstrated that the KDM4B–CCAR1–MED1 signaling axis induces changes in chromatin structure (euchromatinization) near the promoters of osteoclast-related genes through H3K9 demethylation, leading to NF-κB p65 recruitment via a direct interaction between KDM4B and p65. Finally, small molecule inhibition of KDM4B activity impeded bone loss in an ovariectomized mouse model. Taken together, our findings establish KDM4B as a critical regulator of osteoclastogenesis, providing a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - You-Jee Jang
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Hye-Jung Kim
- New Drug Development Center, KBIO Osong Medical Innovation Foundation, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyerim Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yeojin Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Junil Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seon Young Hwang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jin Sook Song
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hitoshi Okada
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
16
|
Roth DM, Baddam P, Lin H, Vidal-García M, Aponte JD, De Souza ST, Godziuk D, Watson AES, Footz T, Schachter NF, Egan SE, Hallgrímsson B, Graf D, Voronova A. The Chromatin Regulator Ankrd11 Controls Palate and Cranial Bone Development. Front Cell Dev Biol 2021; 9:645386. [PMID: 33996804 PMCID: PMC8117352 DOI: 10.3389/fcell.2021.645386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 11/19/2022] Open
Abstract
Epigenetic and chromatin regulation of craniofacial development remains poorly understood. Ankyrin Repeat Domain 11 (ANKRD11) is a chromatin regulator that has previously been shown to control neural stem cell fates via modulation of histone acetylation. ANKRD11 gene variants, or microdeletions of the 16q24.3 chromosomal region encompassing the ANKRD11 gene, cause KBG syndrome, a rare autosomal dominant congenital disorder with variable neurodevelopmental and craniofacial involvement. Craniofacial abnormalities include a distinct facial gestalt, delayed bone age, tooth abnormalities, delayed fontanelle closure, and frequently cleft or submucosal palate. Despite this, the dramatic phenotype and precise role of ANKRD11 in embryonic craniofacial development remain unexplored. Quantitative analysis of 3D images of KBG syndromic subjects shows an overall reduction in the size of the middle and lower face. Here, we report that mice with heterozygous deletion of Ankrd11 in neural crest cells (Ankrd11nchet) display a mild midfacial hypoplasia including reduced midfacial width and a persistent open fontanelle, both of which mirror KBG syndrome patient facial phenotypes. Mice with a homozygous Ankrd11 deletion in neural crest cells (Ankrd11ncko) die at birth. They show increased severity of several clinical manifestations described for KBG syndrome, such as cleft palate, retrognathia, midfacial hypoplasia, and reduced calvarial growth. At E14.5, Ankrd11 expression in the craniofacial complex is closely associated with developing bony structures, while expression at birth is markedly decreased. Conditional deletion of Ankrd11 leads to a reduction in ossification of midfacial bones, with several ossification centers failing to expand and/or fuse. Intramembranous bones show features of delayed maturation, with bone remodeling severely curtailed at birth. Palatal shelves remain hypoplastic at all developmental stages, with a local reduction in proliferation at E13.5. Our study identifies Ankrd11 as a critical regulator of intramembranous ossification and palate development and suggests that Ankrd11nchet and Ankrd11ncko mice may serve as pre-clinical models for KBG syndrome in humans.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Pranidhi Baddam
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Haiming Lin
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jose David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah-Thea De Souza
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Devyn Godziuk
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Adrianne Eve Scovil Watson
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nathan F. Schachter
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E. Egan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Crous A, Abrahamse H. The Signalling Effects of Photobiomodulation on Osteoblast Proliferation, Maturation and Differentiation: A Review. Stem Cell Rev Rep 2021; 17:1570-1589. [PMID: 33686595 DOI: 10.1007/s12015-021-10142-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Proliferation of osteoblasts is essential for maturation and mineralization of bone matrix. Ossification, the natural phase of bone-forming and hardening is a carefully regulated phase where deregulation of this process may result in insufficient or excessive bone mineralization or ectopic calcification. Osteoblasts can also be differentiated into osteocytes, populating short interconnecting passages within the bone matrix. Over the past few decades, we have seen a significant improvement in awareness and techniques using photobiomodulation (PBM) to stimulate cell function. One of the applications of PBM is the promotion of osteoblast proliferation and maturation. PBM research results on osteoblasts showed increased mitochondrial ATP production, increased osteoblast activity and proliferation, increased and pro-osteoblast expression in the presence of red and NIR radiation. Osteocyte differentiation was also accomplished using blue and green light, showing that different light parameters have various signalling effects. The current review addresses osteoblast function and control, a new understanding of PBM on osteoblasts and its therapeutic impact using various parameters to optimize osteoblast function that may be clinically important. Graphical Abstract.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
18
|
Hensley AP, McAlinden A. The role of microRNAs in bone development. Bone 2021; 143:115760. [PMID: 33220505 PMCID: PMC8019264 DOI: 10.1016/j.bone.2020.115760] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation is critical for proper bone development. Evidence from a large body of published literature informs us that microRNAs (miRNAs) are important epigenetic factors that control many aspects of bone development, homeostasis, and repair processes. These small non-coding RNAs function at the post-transcriptional level to suppress expression of specific target genes. Many target genes may be affected by one miRNA resulting in alteration in cellular pathways and networks. Therefore, changes in levels or activity of a specific miRNA (e.g. via genetic mutations, disease scenarios, or by over-expression or inhibition strategies in vitro or in vivo) can lead to substantial changes in cell processes including proliferation, metabolism, apoptosis and differentiation. In this review, Section 1 briefly covers general background information on processes that control bone development as well as the biogenesis and function of miRNAs. In Section 2, we discuss the importance of miRNAs in skeletal development based on findings from in vivo mouse models and human clinical reports. Section 3 focuses on describing more recent data from the last three years related to miRNA regulation of osteoblast differentiation in vitro. Some of these studies also involve utilization of an in vivo rodent model to study the effects of miRNA modulation in scenarios of osteoporosis, bone repair or ectopic bone formation. In Section 4, we provide some recent information from studies analyzing the potential of miRNA-mediated crosstalk in bone and how exosomes containing miRNAs from one bone cell may affect the differentiation or function of another bone cell type. We then conclude by summarizing where the field currently stands with respect to miRNA-mediated regulation of osteogenesis and how information gained from developmental processes can be instructive in identifying potential therapeutic miRNA targets for the treatment of certain bone conditions.
Collapse
Affiliation(s)
- Austin P Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO, United States of America
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America; Shriners Hospital for Children - St Louis, St Louis, MO, United States of America.
| |
Collapse
|
19
|
Montecino M, Carrasco ME, Nardocci G. Epigenetic Control of Osteogenic Lineage Commitment. Front Cell Dev Biol 2021; 8:611197. [PMID: 33490076 PMCID: PMC7820369 DOI: 10.3389/fcell.2020.611197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Within the eukaryotic nucleus the genomic DNA is organized into chromatin by stably interacting with the histone proteins as well as with several other nuclear components including non-histone proteins and non-coding RNAs. Together these interactions distribute the genetic material into chromatin subdomains which can exhibit higher and lower compaction levels. This organization contributes to differentially control the access to genomic sequences encoding key regulatory genetic information. In this context, epigenetic mechanisms play a critical role in the regulation of gene expression as they modify the degree of chromatin compaction to facilitate both activation and repression of transcription. Among the most studied epigenetic mechanisms we find the methylation of DNA, ATP-dependent chromatin remodeling, and enzyme-mediated deposition and elimination of post-translational modifications at histone and non-histone proteins. In this mini review, we discuss evidence that supports the role of these epigenetic mechanisms during transcriptional control of osteoblast-related genes. Special attention is dedicated to mechanisms of epigenetic control operating at the Runx2 and Sp7 genes coding for the two principal master regulators of the osteogenic lineage during mesenchymal stem cell commitment.
Collapse
Affiliation(s)
- Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Margarita E Carrasco
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Gino Nardocci
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Molecular Biology and Bioinformatic Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago, Chile
| |
Collapse
|
20
|
Nuclear mechanosensing controls MSC osteogenic potential through HDAC epigenetic remodeling. Proc Natl Acad Sci U S A 2020; 117:21258-21266. [PMID: 32817542 PMCID: PMC7474590 DOI: 10.1073/pnas.2006765117] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cells sense mechanical cues from the extracellular matrix to regulate cellular behavior and maintain tissue homeostasis. The nucleus has been implicated as a key mechanosensor and can directly influence chromatin organization, epigenetic modifications, and gene expression. Dysregulation of nuclear mechanosensing has been implicated in several diseases, including bone degeneration. Here, we exploit photostiffening hydrogels to manipulate nuclear mechanosensing in human mesenchymal stem cells (hMSCs) in vitro. Results show that hMSCs respond to matrix stiffening by increasing nuclear tension and causing an increase in histone acetylation via deactivation of histone deacetylases (HDACs). This ultimately induces osteogenic fate commitment. Disrupting nuclear mechanosensing by disconnecting the nucleus from the cytoskeleton up-regulates HDACs and prevents osteogenesis. Resetting HDAC activity back to healthy levels rescues the epigenetic and osteogenic response in hMSCs with pathological nuclear mechanosensing. Notably, bone from patients with osteoarthritis displays similar defective nuclear mechanosensing. Collectively, our results reveal that nuclear mechanosensing controls hMSC osteogenic potential mediated by HDAC epigenetic remodeling and that this cellular mechanism is likely relevant to bone-related diseases.
Collapse
|
21
|
Bone Remodeling: Histone Modifications as Fate Determinants of Bone Cell Differentiation. Int J Mol Sci 2019; 20:ijms20133147. [PMID: 31252653 PMCID: PMC6651527 DOI: 10.3390/ijms20133147] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
The bone tissue is a dynamic complex that constitutes of several interdependent systems and is continuously remodeled through the concerted actions of bone cells. Osteoblasts are mononucleated cells, derived from mesenchymal stem cells, responsible for bone formation. Osteoclasts are large multinucleated cells that differentiate from hematopoietic progenitors of the myeloid lineage and are responsible for bone resorption. The lineage-specific differentiation of bone cells requires an epigenetic regulation of gene expressions involving chromatin dynamics. The key step for understanding gene regulatory networks during bone cell development lies in characterizing the chromatin modifying enzymes responsible for reorganizing and potentiating particular chromatin structure. This review covers the histone-modifying enzymes involved in bone development, discusses the impact of enzymes on gene expression, and provides future directions and clinical significance in this area.
Collapse
|
22
|
Jiang X, Wu H, Zhao W, Ding X, You Q, Zhu F, Qian M, Yu P. Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cells. Cancer Cell Int 2019; 19:68. [PMID: 30948928 PMCID: PMC6429703 DOI: 10.1186/s12935-019-0789-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Background Monoclonal antibodies targeting programmed death-1 receptor (PD-1) and its ligand (PD-L1) have been developed to treat cancers including lung cancer. In this study, we aimed to investigate whether lycopene could promote the effect of anti-PD-1 treatment on lung cancer. Methods Tumor formation assay was conducted. Immune reactions were assessed by detecting several cytokine levels using enzyme-like immunosorbent assay. T cell activity was analyzed using cytometry. The mechanism of lycopene action was investigated using Western blot, quantitative real-time polymerase chain reaction and bisulfite sequencing analysis. Results After the mice injected with Lewis lung carcinoma (LLC) cells were sacrificed, we found that combined lycopene and anti-PD-1 reduced the tumor volume and weight compared to control treatment. Cell apoptosis in the tumor tissues was significantly enhanced in mice with combined lycopene and anti-PD-1 treatment in comparison with those of either lycopene or anti-PD-1 alone. Furthermore, lycopene could assist anti-PD-1 to elevate the levels of interleukin (IL)-1 and interferon (IFN) γ while reduce the levels of IL-4 and IL-10 in the spleen of mice injected with LLC cells. Lycopene treatment increased the CD4+/CD8+ ratio in the spleen and promoted IFNγ-expressing CD8+ T cells in tumor tissues. Upon IFNγ stimulation, lycopene diminished PD-L1 expression via activating JAK and repressing phosphorylation of AKT. Conclusion Our results have demonstrated that lycopene could be used as a potential adjuvant drug to synergistically improve the efficiency of anti-PD-1 therapy. Electronic supplementary material The online version of this article (10.1186/s12935-019-0789-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiufeng Jiang
- Department of Respiratory Medicine, The Fifth People's Hospital of Wuxi City, Wuxi, 214016 China
| | - Hui Wu
- Department of Respiratory Medicine, The Fifth People's Hospital of Wuxi City, Wuxi, 214016 China
| | - Wei Zhao
- Department of Respiratory Medicine, The Fifth People's Hospital of Wuxi City, Wuxi, 214016 China
| | - Xiao Ding
- Department of Respiratory Medicine, The Fifth People's Hospital of Wuxi City, Wuxi, 214016 China
| | - Qian You
- Department of Respiratory Medicine, The Fifth People's Hospital of Wuxi City, Wuxi, 214016 China
| | - Feng Zhu
- Department of Respiratory Medicine, The Fifth People's Hospital of Wuxi City, Wuxi, 214016 China
| | - Meifang Qian
- Department of Respiratory Medicine, The Fifth People's Hospital of Wuxi City, Wuxi, 214016 China
| | - Ping Yu
- Department of Respiratory Medicine, The Fifth People's Hospital of Wuxi City, Wuxi, 214016 China
| |
Collapse
|
23
|
Lameira AG, Françoso BG, Absy S, Pecorari VG, Casati MZ, Ribeiro FV, Andia DC. Resveratrol Reverts Epigenetic and Transcription Changes Caused by Smoke Inhalation on Bone-Related Genes in Rats. DNA Cell Biol 2018; 37:670-679. [PMID: 29958005 DOI: 10.1089/dna.2018.4237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We investigated the effects of cigarette smoke (CS) and resveratrol intake on the modulation of bone repair-related genes through epigenetic mechanisms at the global and gene-specific levels, after 30 days of calvarial defects were created, in rats. The samples were assigned to three groups as follows: no CS, CS, and CS/resveratrol. After evaluation of global (5 hmC) changes and epigenetic and transcription regulation at gene-specific levels, CS group showed increased 5 hmC and Tets transcripts with demethylation at Rankl and Trap promoters (p ≤ 0.01), linked to their increased gene expression (p ≤ 0.001). These modifications were reverted in the CS/resveratrol group. Opposite patterns were observed among CS and CS/resveratrol for epigenetic enzyme transcripts with higher levels of Dnmts in the CS/resveratrol (p ≤ 0.01). No CS and CS/resveratrol demonstrated similar gene expression levels for all Tets and bone-related genes. Resveratrol reverts epigenetic and transcription changes caused by CS at both global and gene-specific levels in bone-related and epigenetic machinery genes, emphasizing the resveratrol as biological modulator for CS in rats.
Collapse
Affiliation(s)
- Aladim Gomes Lameira
- Dental Research Division, School of Dentistry, Health Sciences Institute, Paulista University , São Paulo, Brazil
| | - Beatriz Ganhito Françoso
- Dental Research Division, School of Dentistry, Health Sciences Institute, Paulista University , São Paulo, Brazil
| | - Samir Absy
- Dental Research Division, School of Dentistry, Health Sciences Institute, Paulista University , São Paulo, Brazil
| | - Vanessa Galego Pecorari
- Dental Research Division, School of Dentistry, Health Sciences Institute, Paulista University , São Paulo, Brazil
| | - Marcio Zafalon Casati
- Dental Research Division, School of Dentistry, Health Sciences Institute, Paulista University , São Paulo, Brazil
| | - Fernanda Vieira Ribeiro
- Dental Research Division, School of Dentistry, Health Sciences Institute, Paulista University , São Paulo, Brazil
| | - Denise Carleto Andia
- Dental Research Division, School of Dentistry, Health Sciences Institute, Paulista University , São Paulo, Brazil
| |
Collapse
|
24
|
Gilsanz V, Wren TAL, Ponrartana S, Mora S, Rosen CJ. Sexual Dimorphism and the Origins of Human Spinal Health. Endocr Rev 2018; 39:221-239. [PMID: 29385433 PMCID: PMC5888211 DOI: 10.1210/er.2017-00147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Recent observations indicate that the cross-sectional area (CSA) of vertebral bodies is on average 10% smaller in healthy newborn girls than in newborn boys, a striking difference that increases during infancy and puberty and is greatest by the time of sexual and skeletal maturity. The smaller CSA of female vertebrae is associated with greater spinal flexibility and could represent the human adaptation to fetal load in bipedal posture. Unfortunately, it also imparts a mechanical disadvantage that increases stress within the vertebrae for all physical activities. This review summarizes the potential endocrine, genetic, and environmental determinants of vertebral cross-sectional growth and current knowledge of the association between the small female vertebrae and greater risk for a broad array of spinal conditions across the lifespan.
Collapse
Affiliation(s)
- Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Tishya A L Wren
- Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Skorn Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|