1
|
Marshall G, Verdelis K, Peters OA. Patterns of Pulpal Mineralization in Mandibular Anteriors: A Micro-computed Tomography Analysis. J Endod 2024; 50:1734-1742. [PMID: 39384019 DOI: 10.1016/j.joen.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Current understanding of the morphology of pulpal mineralizations is limited. Understanding the specific location and type of such mineralizations will aid clinicians in diagnosis, case complexity assessment, and treatment planning. Therefore, this study correlated the appearance of a reduced canal volume (CV) in conventional radiographs with the presence of pulp mineralizations (PMs) utilizing micro-computed tomography (CT) analysis. The morphology of PMs utilizing micro-CT technology was also analyzed. METHODS One hundred and twenty-one extracted permanent mandibular incisors were collected. Periapical radiographs were taken of the teeth to determine if a reduced canal space was present, in which case the sample was included for micro-CT assessment. Various descriptors for PM were then determined and these labels were then applied to the entire sample to demonstrate PM. Numerical analysis was undertaken for all teeth scanned; the following data was extracted: the presence or absence of PMs, types of PM, and their morphological structures; CVs were determined. Cohen's kappa test was used to assess intraexaminer agreement. RESULTS Based on radiographic appearance, forty-two teeth were included for micro-CT analysis. PMs were demonstrable in 57% and absent 43% of teeth. When PMs were absent, the CV was significantly smaller compared to when they were present (P < .05). Discrete mineralizations were more frequently located in the coronal and middle thirds compared to diffuse mineralization (P < .01). No differences in the prevalence of the individual features of discrete or diffuse mineralizations were detected (P > .05). CONCLUSIONS Two detectable forms of PMs were found in micro-CT analysis at all levels of the canal: discrete and diffuse mineralizations. A reduced CV on a PA was reflective of mineralized changes within the pulp but the type of PM could not be determined. PMs occurred at any level of the root canal; clinicians need to be aware of this when performing root canal treatment.
Collapse
Affiliation(s)
- Georgina Marshall
- School of Dentistry, University of Queensland, Brisbane, Queensland, Australia
| | - Konstantinos Verdelis
- Department of Endodontics and Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania
| | - Ove A Peters
- School of Dentistry, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Sriwattanapong K, Theerapanon T, Khamwachirapitak C, Sae-Ear P, Srijunbarl A, Porntaveetus T, Shotelersuk V. Deep dental phenotyping and a novel FAM20A variant in patients with amelogenesis imperfecta type IG. Oral Dis 2024; 30:537-550. [PMID: 36650945 DOI: 10.1111/odi.14510] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI). METHODS Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized. RESULTS All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin-enamel junction were observed. CONCLUSIONS We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.
Collapse
Affiliation(s)
- Kanokwan Sriwattanapong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chompak Khamwachirapitak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Pannagorn Sae-Ear
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Anucharte Srijunbarl
- Dental Materials R&D Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
3
|
Marshall G, Verdelis K, Peters OA. Morphology of pulpal mineralizations: A scoping review. J Dent 2023; 139:104745. [PMID: 37866408 DOI: 10.1016/j.jdent.2023.104745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
OBJECTIVE The aim of this scoping review was to summarize and discuss the morphological features and associated factors of pulpal mineralizations (PMs) as described within the literature. DATA The study protocol was registered on the Open Science Framework platform and is available at the following link: https://osf.io/hfqwe. This scoping review was developed according to the PRISMA-ScR guidelines. SOURCES A literature search of four electronic databases was performed in SCOPUS, MEDLINE (PubMed), EMBASE and Word of Science, with the last search on May 29, 2023. Study selection was completed by two reviewers independently. Data was extracted regarding study characteristics, types, and features of PM and associated factors. STUDY SELECTION Of 1016 studies initially identified ten which qualified were included in this scoping review. Systemic and local factors that result in pulpal insult can contribute to the development of PMs. Three forms of PM have been reported, pulp stones, diffuse mineralizations, and mineralized ectopic connective tissue, with discrete and diffuse mineralization being the two clinically relevant forms. The different forms of PMs exhibit dissimilar morphological features. CONCLUSION Pulpal mineralizations exist in two clinically relevant forms: diffuse and discrete mineralizations and are likely associated with a pulpal insult. CLINICAL SIGNIFICANCE Understanding the morphology of dental pulp mineralization is the first step to expanding the knowledge of pulp mineralization and could result in improved diagnosis of endodontic pathosis.
Collapse
Affiliation(s)
- Georgina Marshall
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| | - Konstantinos Verdelis
- Department of Endodontics and Department of Oral and Craniofacial Sciences, University of Pittsburgh, School of Dental Medicine, Pittsburgh, PA, United States
| | - Ove A Peters
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Roomaney IA, Kabbashi S, Beshtawi K, Moosa S, Chothia MY, Chetty M. Case report: Enamel renal syndrome: a case series from sub-Saharan Africa. FRONTIERS IN ORAL HEALTH 2023; 4:1228760. [PMID: 37675434 PMCID: PMC10477592 DOI: 10.3389/froh.2023.1228760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Enamel Renal Syndrome (ERS) (OMIM # 204690) is a rare genetic condition characterised by hypoplastic amelogenesis imperfecta, failed tooth eruption, intra-pulpal calcifications, gingival enlargement and occasionally nephrocalcinosis. In this case series, we report on four unrelated patients with a confirmed molecular diagnosis of ERS (FAM20A pathogenic variants) from Sub-Saharan Africa. The pathognomonic oral profile of ERS was mostly fulfilled in these patients, with the notable addition of an odontoma in one patient. The cases presented a spectrum of phenotypic severity both dentally and systemically. One patient presented with nephrocalcinosis and abnormal kidney function, one had reduced kidney size with normal kidney function, and two had no renal abnormalities. Patients presenting with the oral profile of ERS should receive a prompt referral to a nephrologist and a geneticist. They should receive long-term management from a multidisciplinary medical and dental team.
Collapse
Affiliation(s)
- I. A. Roomaney
- Department of Craniofacial Biology, Pathology and Radiology, Faculty of Dentistry, University of Western Cape, Cape Town, South Africa
| | - S. Kabbashi
- Department of Craniofacial Biology, Pathology and Radiology, Faculty of Dentistry, University of Western Cape, Cape Town, South Africa
| | - K. Beshtawi
- Department of Craniofacial Biology, Pathology and Radiology, Faculty of Dentistry, University of Western Cape, Cape Town, South Africa
- Department of Dental Sciences, Faculty of Graduate Study, Arab American University, Jenin, Palestine
| | - S. Moosa
- Division of Molecular Biology and Human Genetics, Stellenbosch University Faculty of Medicine and Health Sciences, Cape Town, South Africa
- Medical Genetics, Tygerberg Hospital, Cape Town, South Africa
| | - M. Y. Chothia
- Division of Nephrology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - M. Chetty
- Department of Craniofacial Biology, Pathology and Radiology, Faculty of Dentistry, University of Western Cape, Cape Town, South Africa
| |
Collapse
|
5
|
Wang SK, Zhang H, Wang YL, Lin HY, Seymen F, Koruyucu M, Wright JT, Kim JW, Simmer JP, Hu JCC. FAM20A mutations and transcriptome analyses of dental pulp tissues of enamel renal syndrome. Int Endod J 2023; 56:943-954. [PMID: 37159186 PMCID: PMC10524697 DOI: 10.1111/iej.13928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
AIM Biallelic loss-of-function FAM20A mutations cause amelogenesis imperfecta (AI) type IG, better known as enamel renal syndrome (ERS), characterized by severe enamel hypoplasia, delayed/failed tooth eruption, intrapulpal calcifications, gingival hyperplasia and nephrocalcinosis. FAM20A binds to FAM20C, the Golgi casein kinase (GCK) and potentiates its function to phosphorylate secreted proteins critical for biomineralization. While many FAM20A pathogenic mutations have been reported, the pathogeneses of orodental anomalies in ERS remain to be elucidated. This study aimed to identify disease-causing mutations for patients with ERS phenotypes and to discern the molecular mechanism underlying ERS intrapulpal calcifications. METHODOLOGY Phenotypic characterization and whole exome analyses were conducted for 8 families and 2 sporadic cases with hypoplastic AI. A minigene assay was performed to investigate the molecular consequences of a FAM20A splice-site variant. RNA sequencing followed by transcription profiling and gene ontology (GO) analyses were carried out for dental pulp tissues of ERS and the control. RESULTS Biallelic FAM20A mutations were demonstrated for each affected individual, including 7 novel pathogenic variants: c.590-5T>A, c.625T>A (p.Cys209Ser), c.771del (p.Gln258Argfs*28), c.832_835delinsTGTCCGACGGTGTCCGACGGTGTC CA (p.Val278Cysfs*29), c.1232G>A (p.Arg411Gln), c.1297A>G (p.Arg433Gly) and c.1351del (p.Gln451Serfs*4). The c.590-5T>A splice-site mutation caused Exon 3 skipping, which resulted in an in-frame deletion of a unique region of the FAM20A protein, p.(Asp197_Ile214delinsVal). Analyses of differentially expressed genes in ERS pulp tissues demonstrated that genes involved in biomineralization, particularly dentinogenesis, were significantly upregulated, such as DSPP, MMP9, MMP20 and WNT10A. Enrichment analyses indicated overrepresentation of gene sets associated with BMP and SMAD signalling pathways. In contrast, GO terms related to inflammation and axon development were underrepresented. Among BMP signalling genes, BMP agonists GDF7, GDF15, BMP3, BMP8A, BMP8B, BMP4 and BMP6 were upregulated, while BMP antagonists GREM1, BMPER and VWC2 showed decreased expression in ERS dental pulp tissues. CONCLUSIONS Upregulation of BMP signalling underlies intrapulpal calcifications in ERS. FAM20A plays an essential role in pulp tissue homeostasis and prevention of ectopic mineralization in soft tissues. This critical function probably depends upon MGP (matrix Gla protein), a potent mineralization inhibitor that must be properly phosphorylated by FAM20A-FAM20C kinase complex.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No.1, Changde St., Taipei City 100229, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No.8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48108, USA
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No.1, Changde St., Taipei City 100229, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No.8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Hung-Ying Lin
- Department of Oral and Maxillofacial Surgery, National Taiwan University Hospital; No.1, Changde St., Taipei City 100229, Taiwan
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Altinbas University, Istanbul, 34147, Turkey
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, 34116, Turkey
| | - J Timothy Wright
- Department of Pediatric Dentistry, University of North Carolina School of Dentistry, CB 7450, 228 Brauer Hall, Chapel Hill, NC 27599, USA
| | - Jung-Wook Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48108, USA
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48108, USA
| |
Collapse
|
6
|
Juárez-Gallegos J, Rodríguez-Hidalgo A, Santana M, Arzate H, Montoya-Ayala G. Characterization of pulp calcifications and changes in their composition after treatments with citric acid and ethylenediaminetetraacetic acid solutions. Microsc Res Tech 2023; 86:41-52. [PMID: 36314569 DOI: 10.1002/jemt.24255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
The ectopic calcifications of non-mineralized tissues can occur in several forms throughout life, such as pulpal calcification. The presence of pulp stones is a challenge in endodontic treatment because they partially or fully obliterate the pulp chamber hindering access to root canals and their subsequent shaping. This study aimed to determine their crystallographic properties and evaluate the capacity of citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to promote the demineralization of pulp calcifications. The samples were obtained from patients with indications of endodontic treatment, and the radiographic examination was suggestive of pulp stone in at least one permanent tooth. The samples were isolated and analyzed by scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDX). The Fourier Transform by high resolution-transmission electron microscopy, Raman microscopy, and X-ray diffraction (XRD) were used to identify the mineral phase and crystallographic characteristics. To evaluate the effect of CA and EDTA on the crystallinity of calcifications, they were submerged into these two individual solutions and the changes were assessed in situ by Raman spectroscopy. The SEM images obtained from calcifications demonstrated irregular morphologies. EDX of sample surfaces shows a high presence of oxygen, carbon, calcium, and phosphorous, however, other elements such as sodium, magnesium, nitrogen, chlorine, potassium, sulfur, and zinc were identified in less quantity. According to Raman, XRD, and high-resolution transmission electron microscopy, the predominant mineral phase identified in the pulpal calcification was a poor crystallinity apatite. According to in situ analyses, the effect of CA and EDTA was observed on the signals of PO4 3- and CH2 groups corresponding to inorganic and organic components. The changes with CA were evident at 7 min while the effect of EDTA was observed until 15 min of treatment. All results indicate that pulp stones have a heterogeneous composition principally composed of apatite with low crystallinity. The solubility of these pathological minerals is adequate using solutions such as EDTA or CA; however, the effectivity depends on the mineralization grade of calcifications, time, and concentration of exposition to this chemical.
Collapse
Affiliation(s)
- Julieta Juárez-Gallegos
- Departamento de Endodoncia, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra Rodríguez-Hidalgo
- Departamento de Endodoncia, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maricela Santana
- Laboratorio de Biología Periodontal, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Higinio Arzate
- Laboratorio de Biología Periodontal, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gonzalo Montoya-Ayala
- Laboratorio de Biología Periodontal, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
Bazin D, Foy E, Reguer S, Rouzière S, Fayard B, Colboc H, Haymann JP, Daudon M, Mocuta C. The crucial contribution of X-ray fluorescence spectroscopy in medicine. CR CHIM 2022. [DOI: 10.5802/crchim.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Desoutter A, Cases O, Collart Dutilleul PY, Simancas Escorcia V, Cannaya V, Cuisinier F, Kozyraki R. Enamel and dentin in Enamel renal syndrome: A confocal Raman microscopy view. Front Physiol 2022; 13:957110. [PMID: 36091358 PMCID: PMC9453029 DOI: 10.3389/fphys.2022.957110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Enamel Renal Syndrome (ERS) is a rare genetic disorder caused by biallelic mutations in Family with sequence similarity 20A (FAM20A) gene encoding the secretory pathway pseudokinase FAM20A. ERS is characterized by hypoplastic amelogenesis imperfecta (AI), impaired tooth eruption, intra-pulpal calcifications, gingival fibromatosis and nephrocalcinosis of various severity. Previous studies showed that the hypoplastic enamel was also hypomineralized but its chemical composition has not been extensively studied. Furthermore it is currently unclear whether dentinal defects are associated with AI in ERS patients. The objective of the study was to provide a structural and chemical analysis of enamel, dentin and dentin enamel junction (DEJ) in ERS patients carrying four, previously reported, distinct mutations in FAM20A. Chemical cartography obtained with Raman microscopy showed that compared to control samples, ERS enamel composition was severely altered and a cementum-like structure was observed in some cases. Chemical composition of peripulpal dentin was also affected and usual gradient of phosphate intensity, shown in DEJ profile, was absent in ERS samples. DEJ and dentinal anomalies were further confirmed by scanning electron microscopy analysis. In conclusion, our study shows that enamel formation is severely compromised in ERS patients and provides evidence that dentinal defects are an additional feature of the ERS dental phenotype.
Collapse
Affiliation(s)
- Alban Desoutter
- Laboratoire Bioingénierie et Nanosciences LBN, Université de Montpellier, Montpellier, France
- *Correspondence: Alban Desoutter,
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | | | - Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Laboratory of Oral Molecular Pathophysiology, Paris, France
- Facultad de Odontología, Universidad de Cartagena, Grupo Interdisciplinario de Investigaciones y Tratamientos Odontológicos Universidad de Cartagena (GITOUC), Cartagena, Colombia
| | - Vidjea Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Frédéric Cuisinier
- Laboratoire Bioingénierie et Nanosciences LBN, Université de Montpellier, Montpellier, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Laboratory of Oral Molecular Pathophysiology, Paris, France
- CRMR O-RARES, Hôpital Rothshild, UFR d’Odontologie-Garancière, Université de Paris Cité, Paris, France
| |
Collapse
|
9
|
Ye J, Xu B, Fan B, Zhang J, Yuan F, Chen Y, Sun Z, Yan X, Song Y, Song S, Yang M, Yu JK. Discovery of Selenocysteine as a Potential Nanomedicine Promotes Cartilage Regeneration With Enhanced Immune Response by Text Mining and Biomedical Databases. Front Pharmacol 2020; 11:1138. [PMID: 32792959 PMCID: PMC7394085 DOI: 10.3389/fphar.2020.01138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background Unlike bone tissue, little progress has been made regarding cartilage regeneration, and many challenges remain. Furthermore, the key roles of cartilage lesion caused by traumas, focal lesion, or articular overstress remain unclear. Traumatic injuries to the meniscus as well as its degeneration are important risk factors for long-term joint dysfunction, degenerative joint lesions, and knee osteoarthritis (OA) a chronic joint disease characterized by degeneration of articular cartilage and hyperosteogeny. Nearly 50% of the individuals with meniscus injuries develop OA over time. Due to the limited inherent self-repair capacity of cartilage lesion, the Biomaterial drug-nanomedicine is considered to be a promising alternative. Therefore, it is important to elucidate the gene potential regeneration mechanisms and discover novel precise medication, which are identified through this study to investigate their function and role in pathogenesis. Methods We downloaded the mRNA microarray statistics GSE117999, involving paired cartilage lesion tissue samples from 12 OA patients and 12 patients from a control group. First, we analyzed these statistics to recognize the differentially expressed genes (DEGs). We then exposed the gene ontology (GO) annotation and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analyses for these DEGs. Protein-protein interaction (PPI) networks were then constructed, from which we attained eight significant genes after a functional interaction analysis. Finally, we identified a potential nanomedicine attained from this assay set, using a wide range of inhibitor information archived in the Search Tool for the Retrieval of Interacting Genes (STRING) database. Results Sixty-six DEGs were identified with our standards for meaning (adjusted P-value < 0.01, |log2 - FC| ≥1.2). Furthermore, we identified eight hub genes and one potential nanomedicine - Selenocysteine based on these integrative data. Conclusion We identified eight hub genes that could work as prospective biomarkers for the diagnostic and biomaterial drug treatment of cartilage lesion, involving the novel genes CAMP, DEFA3, TOLLIP, HLA-DQA2, SLC38A6, SLC3A1, FAM20A, and ANO8. Meanwhile, these genes were mainly associated with immune response, immune mediator induction, and cell chemotaxis. Significant support is provided for obtaining a series of novel gene targets, and we identify potential mechanisms for cartilage regeneration and final nanomedicine immunotherapy in regenerative medicine.
Collapse
Affiliation(s)
- Jing Ye
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Bingbing Xu
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Baoshi Fan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jiying Zhang
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Fuzhen Yuan
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Yourong Chen
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Zewen Sun
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Xin Yan
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Yifan Song
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Shitang Song
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Meng Yang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| |
Collapse
|
10
|
Pathological Mineralization: The Potential of Mineralomics. MATERIALS 2019; 12:ma12193126. [PMID: 31557841 PMCID: PMC6804219 DOI: 10.3390/ma12193126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
Pathological mineralization has been reported countless times in the literature and is a well-known phenomenon in the medical field for its connections to a wide range of diseases, including cancer, cardiovascular, and neurodegenerative diseases. The minerals involved in calcification, however, have not been directly studied as extensively as the organic components of each of the pathologies. These have been studied in isolation and, for most of them, physicochemical properties are hitherto not fully known. In a parallel development, materials science methods such as electron microscopy, spectroscopy, thermal analysis, and others have been used in biology mainly for the study of hard tissues and biomaterials and have only recently been incorporated in the study of other biological systems. This review connects a range of soft tissue diseases, including breast cancer, age-related macular degeneration, aortic valve stenosis, kidney stone diseases, and Fahr’s syndrome, all of which have been associated with mineralization processes. Furthermore, it describes how physicochemical material characterization methods have been used to provide new information on such pathologies. Here, we focus on diseases that are associated with calcium-composed minerals to discuss how understanding the properties of these minerals can provide new insights on their origins, considering that different conditions and biological features are required for each type of mineral to be formed. We show that mineralomics, or the study of the properties and roles of minerals, can provide information which will help to improve prevention methods against pathological mineral build-up, which in the cases of most of the diseases mentioned in this review, will ultimately lead to new prevention or treatment methods for the diseases. Importantly, this review aims to highlight that chemical composition alone cannot fully support conclusions drawn on the nature of these minerals.
Collapse
|