1
|
de Ruijter M, Diloksumpan P, Dokter I, Brommer H, Smit IH, Levato R, van Weeren PR, Castilho M, Malda J. Orthotopic equine study confirms the pivotal importance of structural reinforcement over the pre-culture of cartilage implants. Bioeng Transl Med 2024; 9:e10614. [PMID: 38193127 PMCID: PMC10771555 DOI: 10.1002/btm2.10614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 01/10/2024] Open
Abstract
In articular cartilage (AC), the collagen arcades provide the tissue with its extraordinary mechanical properties. As these structures cannot be restored once damaged, functional restoration of AC defects remains a major challenge. We report that the use of a converged bioprinted, osteochondral implant, based on a gelatin methacryloyl cartilage phase, reinforced with precisely patterned melt electrowritten polycaprolactone micrometer-scale fibers in a zonal fashion, inspired by native collagen architecture, can provide long-term mechanically stable neo-tissue in an orthotopic large animal model. The design of this novel implant was achieved via state-of-the-art converging of extrusion-based ceramic printing, melt electrowriting, and extrusion-based bioprinting. Interestingly, the cell-free implants, used as a control in this study, showed abundant cell ingrowth and similar favorable results as the cell-containing implants. Our findings underscore the hypothesis that mechanical stability is more determining for the successful survival of the implant than the presence of cells and pre-cultured extracellular matrix. This observation is of great translational importance and highlights the aptness of advanced 3D (bio)fabrication technologies for functional tissue restoration in the harsh articular joint mechanical environment.
Collapse
Affiliation(s)
- Mylène de Ruijter
- Department of Orthopaedics, RMCU Utrecht, UMC UtrechtUniversity of UtrechtUtrechtThe Netherlands
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Paweena Diloksumpan
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Inge Dokter
- Department of Orthopaedics, RMCU Utrecht, UMC UtrechtUniversity of UtrechtUtrechtThe Netherlands
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Ineke H. Smit
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, RMCU Utrecht, UMC UtrechtUniversity of UtrechtUtrechtThe Netherlands
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - P. René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Miguel Castilho
- Department of Orthopaedics, RMCU Utrecht, UMC UtrechtUniversity of UtrechtUtrechtThe Netherlands
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jos Malda
- Department of Orthopaedics, RMCU Utrecht, UMC UtrechtUniversity of UtrechtUtrechtThe Netherlands
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
2
|
Bolz NM, Sánchez-Andrade JS, Torgerson PR, Bischofberger AS. Diagnostic Performance of Multi-Detector Computed Tomography Arthrography and 3-Tesla Magnetic Resonance Imaging to Diagnose Experimentally Created Articular Cartilage Lesions in Equine Cadaver Stifles. Animals (Basel) 2023; 13:2304. [PMID: 37508081 PMCID: PMC10376593 DOI: 10.3390/ani13142304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The purpose of the study was to determine the diagnostic performance of computed tomographic arthrography (CTA) and 3-Tesla magnetic resonance imaging (MRI) for detecting artificial cartilage lesions in equine femorotibial and femoropatellar joints. METHODS A total of 79 cartilage defects were created arthroscopically in 15 cadaver stifles from adult horses in eight different locations. In addition, 68 sites served as negative controls. MRI and CTA (80-160 mL iodinated contrast media at 87.5 mg/mL per joint) studies were obtained and evaluated by a radiologist unaware of the lesion distribution. The stifles were macroscopically evaluated, and lesion surface area, depth, and volume were determined. The sensitivity and specificity of MRI and CTA were calculated and compared between modalities. RESULTS The sensitivity values of CTA (53%) and MRI (66%) were not significantly different (p = 0.09). However, the specificity of CTA (66%) was significantly greater compared to MRI (52%) (p = 0.04). The mean lesion surface area was 11 mm2 (range: 2-54 mm2). Greater lesion surface area resulted in greater odds of lesion detection with CTA but not with MRI. CONCLUSIONS CTA achieved a similar diagnostic performance compared to high-field MRI in detecting small experimental cartilage lesions. Despite this, CTA showed a higher specificity than MRI, thus making CTA more accurate in diagnosing normal cartilage. Small lesion size was a discriminating factor for lesion detection. In a clinical setting, CTA may be preferred over MRI due to higher availability and easier image acquisition.
Collapse
Affiliation(s)
- Nico M Bolz
- Equine Hospital, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | | | - Paul R Torgerson
- Section of Veterinary Epidemiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Andrea S Bischofberger
- Clinic for Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
McCarthy HS, Tins B, Gallacher PD, Jermin P, Richardson JB, Kuiper JH, Roberts S. Histological and Radiological Assessment of Endogenously Generated Repair Tissue In Vivo Following a Chondral Harvest. Cartilage 2023; 14:48-58. [PMID: 36704827 PMCID: PMC10076898 DOI: 10.1177/19476035221149523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To examine repair tissue formed approximately 15 months after a chondral harvest in the human knee. DESIGN Sixteen individuals (12 males, 4 females, mean age 36 ± 9 years) underwent a chondral harvest in the trochlea as a pre-requisite for autologous chondrocyte implantation (ACI) treatment. The harvest site was assessed via MRI at 14.3 ± 3.2 months and arthroscopy at 15 ± 3.5 months (using the Oswestry Arthroscopy Score [O-AS] and the International Cartilage Repair Society Arthroscopy Score [ICRS-AS]). Core biopsies (1.8 mm diameter, n = 16) of repair tissue obtained at arthroscopy were assessed histologically (using the ICRS II and OsScore histology scores) and examined via immunohistochemistry for the presence of collagen types I and II. RESULTS The mean O-AS and ICRS-AS of the repaired harvest sites were 7.2 ± 3.2 and 10.1 ± 3.5, respectively, with 80.3% ± 26% repair fill depth on MRI. The histological quality of the repair tissue formed was variable, with some hyaline cartilage present in 50% of the biopsies; where this occurred, it was associated with a significantly higher ICRS-AS than those with no hyaline cartilage present (median 11 vs. 7.5, P = 0.049). Collagen types I and II were detected in 12/14 and 10/13 biopsies, respectively. CONCLUSIONS We demonstrate good-quality structural repair tissue formed following cartilage harvest in ACI, suggesting this site can be useful to study endogenous cartilage repair in humans. The trochlea is less commonly affected by osteoarthritis; therefore, location may be critical for spontaneous repair. Understanding the mechanisms and factors influencing this could improve future treatments for cartilage defects.
Collapse
Affiliation(s)
- Helen S McCarthy
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, UK
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, UK
| | - Bernhard Tins
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, UK
| | - Peter D Gallacher
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, UK
| | - Paul Jermin
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, UK
| | - James B Richardson
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, UK
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, UK
| | - Jan Herman Kuiper
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, UK
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, UK
| | - Sally Roberts
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, UK
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, UK
| |
Collapse
|
4
|
Salonius E, Meller A, Paatela T, Vasara A, Puhakka J, Hannula M, Haaparanta AM, Kiviranta I, Muhonen V. Cartilage Repair Capacity within a Single Full-Thickness Chondral Defect in a Porcine Autologous Matrix-Induced Chondrogenesis Model Is Affected by the Location within the Defect. Cartilage 2021; 13:744S-754S. [PMID: 34308665 PMCID: PMC8804745 DOI: 10.1177/19476035211030988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Large articular cartilage defects are a challenge to regenerative surgery. Biomaterial scaffolds might provide valuable support for restoration of articulating surface. The performance of a composite biomaterial scaffold was evaluated in a large porcine cartilage defect. DESIGN Cartilage repair capacity of a biomaterial combining recombinant human type III collagen (rhCo) and poly-(l/d)-lactide (PLA) was tested in a porcine model. A full-thickness chondral defect covering the majority of the weightbearing area was inflicted to the medial femoral condyle of the right knee. Spontaneous cartilage repair and nonoperated healthy animals served as controls. The animals were sacrificed after a 4-month follow-up. The repair tissue was evaluated with the International Cartilage Repair Society (ICRS) macroscopic score, ICRS II histological score, and with micro-computed tomography. Additionally, histopathological evaluation of lymph nodes and synovial samples were done for toxicological analyses. RESULTS The lateral half of the cartilage defect in the operated groups showed better filling than the medial half. The mean overall macroscopic score for the rhCo-PLA, spontaneous, and nonoperated groups were 5.96 ± 0.33, 4.63 ± 0.42, and 10.98 ± 0.35, respectively. The overall histological appearance of the specimens was predominantly hyaline cartilage in 3 of 9 samples of the rhCo-PLA group, 2 of 8 of the spontaneous group, and 9 of 9 of the nonoperated group. CONCLUSIONS The use of rhCo-PLA scaffold did not differ from spontaneous healing. The repair was affected by the spatial properties within the defect, as the lateral part of the defect showed better repair than the medial part, probably due to different weightbearing conditions.
Collapse
Affiliation(s)
- E. Salonius
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Surgery, Päijät-Häme
Central Hospital, Lahti, Finland,E. Salonius, Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Biomedicum Helsinki,
Haartmaninkatu 8, Helsinki, 00014, Finland.
| | - A. Meller
- University of Helsinki, HiLIFE–Helsinki
Institute of Life Science Laboratory Animal Center, Helsinki, Finland
| | - T. Paatela
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Orthopaedics and
Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - A. Vasara
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Orthopaedics and
Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - J. Puhakka
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Orthopaedics and
Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - M. Hannula
- Department of Electronics and
Communications Engineering, Tampere University of Technology, BioMediTech, Institute
of Biosciences and Medical Technology, Tampere, Pirkanmaa, Finland
| | - A.-M. Haaparanta
- Department of Electronics and
Communications Engineering, Tampere University of Technology, BioMediTech, Institute
of Biosciences and Medical Technology, Tampere, Pirkanmaa, Finland
| | - I. Kiviranta
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Orthopaedics and
Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - V. Muhonen
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
te Moller NCR, Mohammadi A, Plomp S, Serra Bragança FM, Beukers M, Pouran B, Afara IO, Nippolainen E, Mäkelä JTA, Korhonen RK, Töyräs J, Brommer H, van Weeren PR. Structural, compositional, and functional effects of blunt and sharp cartilage damage on the joint: A 9-month equine groove model study. J Orthop Res 2021; 39:2363-2375. [PMID: 33368588 PMCID: PMC8597083 DOI: 10.1002/jor.24971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023]
Abstract
This study aimed to quantify the long-term progression of blunt and sharp cartilage defects and their effect on joint homeostasis and function of the equine carpus. In nine adult Shetland ponies, the cartilage in the radiocarpal and middle carpal joint of one front limb was grooved (blunt or sharp randomized). The ponies were subjected to an 8-week exercise protocol and euthanized at 39 weeks. Structural and compositional alterations in joint tissues were evaluated in vivo using serial radiographs, synovial biopsies, and synovial fluid samples. Joint function was monitored by quantitative gait analysis. Macroscopic, microscopic, and biomechanical evaluation of the cartilage and assessment of subchondral bone parameters were performed ex vivo. Grooved cartilage showed higher OARSI microscopy scores than the contra-lateral sham-operated controls (p < 0.0001). Blunt-grooved cartilage scored higher than sharp-grooved cartilage (p = 0.007) and fixed charge density around these grooves was lower (p = 0.006). Equilibrium and instantaneous moduli trended lower in grooved cartilage than their controls (significant for radiocarpal joints). Changes in other tissues included a threefold to sevenfold change in interleukin-6 expression in synovium from grooved joints at week 23 (p = 0.042) and an increased CPII/C2C ratio in synovial fluid extracted from blunt-grooved joints at week 35 (p = 0.010). Gait analysis outcome revealed mild, gradually increasing lameness. In conclusion, blunt and, to a lesser extent, sharp grooves in combination with a period of moderate exercise, lead to mild degeneration in equine carpal cartilage over a 9-month period, but the effect on overall joint health remains limited.
Collapse
Affiliation(s)
- Nikae C. R. te Moller
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Ali Mohammadi
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Saskia Plomp
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Filipe M. Serra Bragança
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Martijn Beukers
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Behdad Pouran
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Isaac O. Afara
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ervin Nippolainen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | | | - Rami K. Korhonen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Juha Töyräs
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - P. René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
6
|
González Vázquez AG, Blokpoel Ferreras LA, Bennett KE, Casey SM, Brama PAJ, O'Brien FJ. Systematic Comparison of Biomaterials-Based Strategies for Osteochondral and Chondral Repair in Large Animal Models. Adv Healthc Mater 2021; 10:e2100878. [PMID: 34405587 PMCID: PMC11468758 DOI: 10.1002/adhm.202100878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Indexed: 01/10/2023]
Abstract
Joint repair remains a major challenge in orthopaedics. Recent progress in biomaterial design has led to the fabrication of a plethora of promising devices. Pre-clinical testing of any joint repair strategy typically requires the use of large animal models (e.g., sheep, goat, pig or horse). Despite the key role of such models in clinical translation, there is still a lack of consensus regarding optimal experimental design, making it difficult to draw conclusions on their efficacy. In this context, the authors performed a systematic literature review and a risk of bias assessment on large animal models published between 2010 and 2020, to identify key experimental parameters that significantly affect the biomaterial therapeutic outcome and clinical translation potential (including defect localization, animal age/maturity, selection of controls, cell-free versus cell-laden). They determined that mechanically strong biomaterials perform better at the femoral condyles; while highlighted the importance of including native tissue controls to better evaluate the quality of the newly formed tissue. Finally, in cell-laded biomaterials, the pre-culture conditions played a more important role in defect repair than the cell type. In summary, here they present a systematic evaluation on how the experimental design of preclinical models influences biomaterial-based therapeutic outcomes in joint repair.
Collapse
Affiliation(s)
- Arlyng G. González Vázquez
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | - Lia A. Blokpoel Ferreras
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | | | - Sarah M. Casey
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | - Pieter AJ Brama
- School of Veterinary MedicineUniversity College Dublin (UCD)Dublin4 D04 V1W8Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin (TCD)Dublin2 D02 PN40Ireland
| |
Collapse
|
7
|
Orozco GA, Bolcos P, Mohammadi A, Tanaka MS, Yang M, Link TM, Ma B, Li X, Tanska P, Korhonen RK. Prediction of local fixed charge density loss in cartilage following ACL injury and reconstruction: A computational proof-of-concept study with MRI follow-up. J Orthop Res 2021; 39:1064-1081. [PMID: 32639603 PMCID: PMC7790898 DOI: 10.1002/jor.24797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 02/04/2023]
Abstract
The purpose of this proof-of-concept study was to develop three-dimensional patient-specific mechanobiological knee joint models to simulate alterations in the fixed charged density (FCD) around cartilage lesions during the stance phase of the walking gait. Two patients with anterior cruciate ligament (ACL) reconstructed knees were imaged at 1 and 3 years after surgery. The magnetic resonance imaging (MRI) data were used for segmenting the knee geometries, including the cartilage lesions. Based on these geometries, finite element (FE) models were developed. The gait of the patients was obtained using a motion capture system. Musculoskeletal modeling was utilized to calculate knee joint contact and lower extremity muscle forces for the FE models. Finally, a cartilage adaptation algorithm was implemented in both FE models. In the algorithm, it was assumed that excessive maximum shear and deviatoric strains (calculated as the combination of principal strains), and fluid velocity, are responsible for the FCD loss. Changes in the longitudinal T1ρ and T2 relaxation times were postulated to be related to changes in the cartilage composition and were compared with the numerical predictions. In patient 1 model, both the excessive fluid velocity and strain caused the FCD loss primarily near the cartilage lesion. T1ρ and T2 relaxation times increased during the follow-up in the same location. In contrast, in patient 2 model, only the excessive fluid velocity led to a slight FCD loss near the lesion, where MRI parameters did not show evidence of alterations. Significance: This novel proof-of-concept study suggests mechanisms through which a local FCD loss might occur near cartilage lesions. In order to obtain statistical evidence for these findings, the method should be investigated with a larger cohort of subjects.
Collapse
Affiliation(s)
- Gustavo A. Orozco
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland.,Corresponding author: Gustavo A. Orozco, Department of Applied Physics, University of Eastern Finland, Kuopio, Finland, Yliopistonranta 1, 70210 Kuopio, FI, Tel: +358 50 3485018,
| | - Paul Bolcos
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Matthew S. Tanaka
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1500 Owens St, San Francisco, CA 94158, USA
| | - Mingrui Yang
- Department of Biomedical Engineering, Lerner Research Institute, Program of Advanced Musculoskeletal Imaging (PAMI), 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1500 Owens St, San Francisco, CA 94158, USA
| | - Benjamin Ma
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1500 Owens St, San Francisco, CA 94158, USA
| | - Xiaojuan Li
- Department of Biomedical Engineering, Lerner Research Institute, Program of Advanced Musculoskeletal Imaging (PAMI), 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland
| |
Collapse
|
8
|
Kajabi AW, Casula V, Sarin JK, Ketola JH, Nykänen O, te Moller NCR, Mancini IAD, Visser J, Brommer H, René van Weeren P, Malda J, Töyräs J, Nieminen MT, Nissi MJ. Evaluation of articular cartilage with quantitative MRI in an equine model of post-traumatic osteoarthritis. J Orthop Res 2021; 39:63-73. [PMID: 32543748 PMCID: PMC7818146 DOI: 10.1002/jor.24780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/19/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Chondral lesions lead to degenerative changes in the surrounding cartilage tissue, increasing the risk of developing post-traumatic osteoarthritis (PTOA). This study aimed to investigate the feasibility of quantitative magnetic resonance imaging (qMRI) for evaluation of articular cartilage in PTOA. Articular explants containing surgically induced and repaired chondral lesions were obtained from the stifle joints of seven Shetland ponies (14 samples). Three age-matched nonoperated ponies served as controls (six samples). The samples were imaged at 9.4 T. The measured qMRI parameters included T1 , T2 , continuous-wave T1ρ (CWT1ρ ), adiabatic T1ρ (AdT1ρ ), and T2ρ (AdT2ρ ) and relaxation along a fictitious field (TRAFF ). For reference, cartilage equilibrium and dynamic moduli, proteoglycan content and collagen fiber orientation were determined. Mean values and profiles from full-thickness cartilage regions of interest, at increasing distances from the lesions, were used to compare experimental against control and to correlate qMRI with the references. Significant alterations were detected by qMRI parameters, including prolonged T1 , CWT1ρ , and AdT1ρ in the regions adjacent to the lesions. The changes were confirmed by the reference methods. CWT1ρ was more strongly associated with the reference measurements and prolonged in the affected regions at lower spin-locking amplitudes. Moderate to strong correlations were found between all qMRI parameters and the reference parameters (ρ = -0.531 to -0.757). T1 , low spin-lock amplitude CWT1ρ , and AdT1ρ were most responsive to changes in visually intact cartilage adjacent to the lesions. In the context of PTOA, these findings highlight the potential of T1 , CWT1ρ , and AdT1ρ in evaluation of compositional and structural changes in cartilage.
Collapse
Affiliation(s)
- Abdul Wahed Kajabi
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland,Medical Research Center OuluUniversity of Oulu and Oulu University HospitalOuluFinland
| | - Victor Casula
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland,Medical Research Center OuluUniversity of Oulu and Oulu University HospitalOuluFinland
| | - Jaakko K. Sarin
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland,Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
| | - Juuso H. Ketola
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland
| | - Olli Nykänen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Nikae C. R. te Moller
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Irina A. D. Mancini
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Jetze Visser
- Department of OrthopaedicsUniversity Medical Center Utrechtthe Netherlands
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - P. René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands,Department of OrthopaedicsUniversity Medical Center Utrechtthe Netherlands
| | - Juha Töyräs
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland,Diagnostic Imaging CenterKuopio University HospitalKuopioFinland,School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| | - Miika T. Nieminen
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland,Medical Research Center OuluUniversity of Oulu and Oulu University HospitalOuluFinland,Department of Diagnostic RadiologyOulu University HospitalOuluFinland
| | - Mikko J. Nissi
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland,Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
9
|
Chakrabarti S, Ai M, Henson FM, Smith ESJ. Peripheral mechanisms of arthritic pain: A proposal to leverage large animals for in vitro studies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100051. [PMID: 32817908 PMCID: PMC7426561 DOI: 10.1016/j.ynpai.2020.100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 04/14/2023]
Abstract
Pain arising from musculoskeletal disorders such as arthritis is one of the leading causes of disability. Whereas the past 20-years has seen an increase in targeted therapies for rheumatoid arthritis (RA), other arthritis conditions, especially osteoarthritis, remain poorly treated. Although modulation of central pain pathways occurs in chronic arthritis, multiple lines of evidence indicate that peripherally driven pain is important in arthritic pain. To understand the peripheral mechanisms of arthritic pain, various in vitro and in vivo models have been developed, largely in rodents. Although rodent models provide numerous advantages for studying arthritis pathogenesis and treatment, the anatomy and biomechanics of rodent joints differ considerably to those of humans. By contrast, the anatomy and biomechanics of joints in larger animals, such as dogs, show greater similarity to human joints and thus studying them can provide novel insight for arthritis research. The purpose of this article is firstly to review models of arthritis and behavioral outcomes commonly used in large animals. Secondly, we review the existing in vitro models and assays used to study arthritic pain, primarily in rodents, and discuss the potential for adopting these strategies, as well as likely limitations, in large animals. We believe that exploring peripheral mechanisms of arthritic pain in vitro in large animals has the potential to reduce the veterinary burden of arthritis in commonly afflicted species like dogs, as well as to improve translatability of pain research into the clinic.
Collapse
Affiliation(s)
- Sampurna Chakrabarti
- Department of Neuroscience, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- Department of Pharmacology, University of Cambridge, UK
| | - Minji Ai
- Department of Veterinary Medicine, University of Cambridge, UK
| | | | | |
Collapse
|
10
|
Mancini IAD, Schmidt S, Brommer H, Pouran B, Schäfer S, Tessmar J, Mensinga A, van Rijen MHP, Groll J, Blunk T, Levato R, Malda J, van Weeren PR. A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model. Biofabrication 2020; 12:035028. [PMID: 32434160 DOI: 10.1088/1758-5090/ab94ce] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent research has been focusing on the generation of living personalized osteochondral constructs for joint repair. Native articular cartilage has a zonal structure, which is not reflected in current constructs and which may be a cause of the frequent failure of these repair attempts. Therefore, we investigated the performance of a composite implant that further reflects the zonal distribution of cellular component both in vitro and in vivo in a long-term equine model. Constructs constituted of a 3D-printed poly(ϵ-caprolactone) (PCL) bone anchor from which reinforcing fibers protruded into the chondral part of the construct over which two layers of a thiol-ene cross-linkable hyaluronic acid/poly(glycidol) hybrid hydrogel (HA-SH/P(AGE-co-G)) were fabricated. The top layer contained Articular Cartilage Progenitor Cells (ACPCs) derived from the superficial layer of native cartilage tissue, the bottom layer contained mesenchymal stromal cells (MSCs). The chondral part of control constructs were homogeneously filled with MSCs. After six months in vivo, microtomography revealed significant bone growth into the anchor. Histologically, there was only limited production of cartilage-like tissue (despite persistency of hydrogel) both in zonal and non-zonal constructs. There were no differences in histological scoring; however, the repair tissue was significantly stiffer in defects repaired with zonal constructs. The sub-optimal quality of the repair tissue may be related to several factors, including early loss of implanted cells, or inappropriate degradation rate of the hydrogel. Nonetheless, this approach may be promising and research into further tailoring of biomaterials and of construct characteristics seems warranted.
Collapse
Affiliation(s)
- I A D Mancini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584CM, Utrecht, The Netherlands. Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fugazzola MC, van Weeren PR. Surgical osteochondral defect repair in the horse-a matter of form or function? Equine Vet J 2020; 52:489-499. [PMID: 31958175 PMCID: PMC7317185 DOI: 10.1111/evj.13231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/11/2019] [Accepted: 01/11/2020] [Indexed: 02/03/2023]
Abstract
Focal cartilaginous and osteochondral lesions can have traumatic or chondropathic degenerative origin. The fibrocartilaginous repair tissue that forms naturally, eventually undergoes fibrillation and degeneration leading to further disruption of joint homeostasis. Both types of lesion will therefore eventually lead to activity-related pain, swelling and decreased mobility and will frequently progress to osteoarthritis. Most attempts at realising cartilage regeneration have so far resulted in cartilage repair (and not regeneration). The aim of this article was to review experimental research on surgical cartilage restoration techniques performed so far in equine models. Currently available surgical options for treatment of osteochondral lesions in the horse are summarised. The experimental validity of equine experimental models is addressed and finally possible avenues for further research are discussed.
Collapse
|
12
|
Meng X, Ziadlou R, Grad S, Alini M, Wen C, Lai Y, Qin L, Zhao Y, Wang X. Animal Models of Osteochondral Defect for Testing Biomaterials. Biochem Res Int 2020; 2020:9659412. [PMID: 32082625 PMCID: PMC7007938 DOI: 10.1155/2020/9659412] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
The treatment of osteochondral defects (OCD) remains a great challenge in orthopaedics. Tissue engineering holds a good promise for regeneration of OCD. In the light of tissue engineering, it is critical to establish an appropriate animal model to evaluate the degradability, biocompatibility, and interaction of implanted biomaterials with host bone/cartilage tissues for OCD repair in vivo. Currently, model animals that are commonly deployed to create osteochondral lesions range from rats, rabbits, dogs, pigs, goats, and sheep horses to nonhuman primates. It is essential to understand the advantages and disadvantages of each animal model in terms of the accuracy and effectiveness of the experiment. Therefore, this review aims to introduce the common animal models of OCD for testing biomaterials and to discuss their applications in translational research. In addition, we have reviewed surgical protocols for establishing OCD models and biomaterials that promote osteochondral regeneration. For small animals, the non-load-bearing region such as the groove of femoral condyle is commonly chosen for testing degradation, biocompatibility, and interaction of implanted biomaterials with host tissues. For large animals, closer to clinical application, the load-bearing region (medial femoral condyle) is chosen for testing the durability and healing outcome of biomaterials. This review provides an important reference for selecting a suitable animal model for the development of new strategies for osteochondral regeneration.
Collapse
Affiliation(s)
- Xiangbo Meng
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Reihane Ziadlou
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yanyan Zhao
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|