1
|
Marvin JC, Liu EJ, Chen HH, Shiovitz DA, Andarawis-Puri N. Proteins Derived From MRL/MpJ Tendon Provisional Extracellular Matrix and Secretome Promote Pro-Regenerative Tenocyte Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602500. [PMID: 39026846 PMCID: PMC11257490 DOI: 10.1101/2024.07.08.602500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tendinopathies are prevalent musculoskeletal conditions that have no effective therapies to attenuate scar formation. In contrast to other adult mammals, the tendons of Murphy Roths Large (MRL/MpJ) mice possess a superior healing capacity following acute and overuse injuries. Here, we hypothesized that the application of biological cues derived from the local MRL/MpJ tendon environment would direct otherwise scar-mediated tenocytes towards a pro-regenerative MRL/MpJ-like phenotype. We identified soluble factors enriched in the secretome of MRL/MpJ tenocytes using bioreactor systems and quantitative proteomics. We then demonstrated that the combined administration of structural and soluble constituents isolated from decellularized MRL/MpJ tendon provisional ECM (dPECM) and the secretome stimulate scar-mediated rodent tenocytes towards enhanced mechanosensitivity, proliferation, intercellular communication, and ECM deposition associated with MRL/MpJ cell behavior. Our findings highlight key biological mechanisms that drive MRL/MpJ tenocyte activity and their interspecies utility to be harnessed for therapeutic strategies that promote pro-regenerative healing outcomes. Teaser Proteins enriched in a super-healer mouse strain elicit interspecies utility in promoting pro-regenerative tenocyte behavior.
Collapse
|
2
|
Frankewycz B, Bell R, Chatterjee M, Andarawis-Puri N. The superior healing capacity of MRL tendons is minimally influenced by the systemic environment of the MRL mouse. Sci Rep 2023; 13:17242. [PMID: 37821476 PMCID: PMC10567747 DOI: 10.1038/s41598-023-42449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/10/2023] [Indexed: 10/13/2023] Open
Abstract
Murphy Roths Large mice (MRL) exhibit improved tendon healing and are often described as a "super-healer" strain. The underlying mechanisms that drive the superior healing response of MRL remain a controversial subject. We utilized a tendon transplantation model between MRL and "normal-healer" B6-mice to differentiate between the contribution of MRL's innate tendon and systemic environment to its improved healing capacity. Patellar tendons with a midsubstance punch injury were transplanted back into the same animal (autograft) or into an animal of the other strain (allograft). Findings at 4 weeks showed that the innate MRL tendon environment drives its improved healing capacity as demonstrated by improved stiffness and maximum load in MRL-grafts-in-B6-host-allografts compared to B6-autografts, and higher modulus in MRL-autografts compared to B6-graft-in-MRL-host-allografts. Groups with an MRL component showed an increase in pro-inflammatory cytokines in the 3 days after injury, suggesting an early enhanced inflammatory profile in MRL that ultimately resolves. A preserved range of motion of the knee joint in all MRL animals suggests a systemic "shielding effect" of MRL in regard to joint adhesiveness. Our findings 4-weeks post injury are consistent with previous studies showing tissue-driven improved healing and suggest that the systemic environment contributes to the overall healing process.
Collapse
Affiliation(s)
- Borys Frankewycz
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- University Hospital Regensburg, Regensburg, Germany
| | - Rebecca Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
- Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
3
|
Marvin JC, Brakewood ME, Poon MLS, Andarawis-Puri N. Regenerative MRL/MpJ tendon cells exhibit sex differences in morphology, proliferation, mechanosensitivity, and cell-ECM organization. J Orthop Res 2023; 41:2273-2286. [PMID: 37004178 DOI: 10.1002/jor.25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/10/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Clinical and animal studies have reported the influence of sex on the incidence and progression of tendinopathy, which results in disparate structural and biomechanical outcomes. However, there remains a paucity in our understanding of the sex-specific biological mechanisms underlying effective tendon healing. To overcome this hurdle, our group has investigated the impact of sex on tendon regeneration using the super-healer Murphy Roths Large (MRL/MpJ) mouse strain. We have previously shown that the scarless healing capacity of MRL/MpJ patellar tendons is associated with sexually dimorphic regulation of gene expression for pathways involved in fibrosis, cell migration, adhesion, and extracellular matrix (ECM) remodeling following an acute mid-substance injury. Thus, we hypothesized that MRL/MpJ scarless tendon healing is mediated by sex-specific and temporally distinct orchestration of cell-ECM interactions. Accordingly, the present study comparatively evaluated MRL/MpJ tendon cells on two-dimensional (2D; glass) and scaffold platforms to examine cell behavior under biochemical and topographical cues associated with tendon homeostasis and healing. Female MRL/MpJ cells showed reduced 2D migration and spreading area accompanied by enhanced mechanosensing, ECM alignment, and fibronectin-mediated cell proliferation compared to male MRL/MpJ cells. Interestingly, female MRL/MpJ cells cultured on isotropic scaffolds showed diminished cell-ECM organization compared to male MRL/MpJ cells. Lastly, MRL/MpJ cells elicited enhanced cytoskeletal elongation and alignment, ECM deposition and organization, and connexin 43-mediated intercellular communication compared to male B6 cells, regardless of culture condition or sex. These results provide insight into the cellular features conserved within the MRL/MpJ phenotype and potential sex-specific targets for the development of more equitable therapeutics.
Collapse
Affiliation(s)
- Jason C Marvin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Molly E Brakewood
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Mong L S Poon
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
4
|
Aggouras AN, Connizzo BK. Earlier proteoglycan turnover promotes higher efficiency matrix remodeling in MRL/MpJ tendons. J Orthop Res 2023; 41:2261-2272. [PMID: 36866831 PMCID: PMC10475140 DOI: 10.1002/jor.25542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/20/2023] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Abstract
While most mammalian tissue regeneration is limited, the Murphy Roths Large (MRL/MpJ) mouse has been identified to regenerate several tissues, including tendon. Recent studies have indicated that this regenerative response is innate to the tendon tissue and not reliant on a systemic inflammatory response. Therefore, we hypothesized that MRL/MpJ mice may also exhibit a more robust homeostatic regulation of tendon structure in response to mechanical loading. To assess this, MRL/MpJ and C57BL/6J flexor digitorum longus tendon explants were subjected to stress-deprived conditions in vitro for up to 14 days. Explant tendon health (metabolism, biosynthesis, and composition), matrix metalloproteinase (MMP) activity, gene expression, and tendon biomechanics were assessed periodically. We found a more robust response to the loss of mechanical stimulus in the MRL/MpJ tendon explants, exhibiting an increase in collagen production and MMP activity consistent with previous in vivo studies. This greater collagen turnover was preceded by an early expression of small leucine-rich proteoglycans and proteoglycan-degrading MMP-3, promoting efficient regulation and organization of newly synthesized collagen and allowing for more efficient overall turnover in MRL/MpJ tendons. Therefore, mechanisms of MRL/MpJ matrix homeostasis may be fundamentally different from that of B6 tendons and may indicate better recovery from mechanical microdamage in MRL/MpJ tendons. We demonstrate here the utility of the MRL/MpJ model in elucidating mechanisms of efficient matrix turnover and its potential to shed light on new targets for more effective treatments for degenerative matrix changes brought about by injury, disease, or aging.
Collapse
Affiliation(s)
- Anthony N. Aggouras
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, United States
| | - Brianne K. Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
5
|
Chatterjee M, Evans MK, Bell R, Nguyen PK, Kamalitdinov TB, Korntner S, Kuo CK, Dyment NA, Andarawis-Puri N. Histological and immunohistochemical guide to tendon tissue. J Orthop Res 2023; 41:2114-2132. [PMID: 37321983 DOI: 10.1002/jor.25645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Tendons are unique dense connective tissues with discrete zones having specific structure and function. They are juxtaposed with other tissues (e.g., bone, muscle, and fat) with different compositional, structural, and mechanical properties. Additionally, tendon properties change drastically with growth and development, disease, aging, and injury. Consequently, there are unique challenges to performing high quality histological assessment of this tissue. To address this need, histological assessment was one of the breakout session topics at the 2022 Orthopaedic Research Society (ORS) Tendon Conference hosted at the University of Pennsylvania. The purpose of the breakout session was to discuss needs from members of the ORS Tendon Section related to histological procedures, data presentation, knowledge dissemination, and guidelines for future work. Therefore, this review provides a brief overview of the outcomes of this discussion and provides a set of guidelines, based on the perspectives from our laboratories, for histological assessment to assist researchers in their quest to utilize these techniques to enhance the outcomes and interpretations of their studies.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Mary K Evans
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Phong K Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Timur B Kamalitdinov
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefanie Korntner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Catherine K Kuo
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Nathaniel A Dyment
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nelly Andarawis-Puri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
6
|
Chowdary AR, Maerz T, Henn D, Hankenson KD, Pagani CA, Marini S, Gallagher K, Aguilar CA, Tower RJ, Levi B. Macrophage-mediated PDGF Activation Correlates With Regenerative Outcomes Following Musculoskeletal Trauma. Ann Surg 2023; 278:e349-e359. [PMID: 36111847 PMCID: PMC10014496 DOI: 10.1097/sla.0000000000005704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Our objective was to identify macrophage subpopulations and gene signatures associated with regenerative or fibrotic healing across different musculoskeletal injury types. BACKGROUND Subpopulations of macrophages are hypothesized to fine tune the immune response after damage, promoting either normal regenerative, or aberrant fibrotic healing. METHODS Mouse single-cell RNA sequencing data before and after injury were assembled from models of musculoskeletal injury, including regenerative and fibrotic mouse volumetric muscle loss (VML), regenerative digit tip amputation, and fibrotic heterotopic ossification. R packages Harmony , MacSpectrum , and Seurat were used for data integration, analysis, and visualizations. RESULTS There was a substantial overlap between macrophages from the regenerative VML (2 mm injury) and regenerative bone models, as well as a separate overlap between the fibrotic VML (3 mm injury) and fibrotic bone (heterotopic ossification) models. We identified 2 fibrotic-like (FL 1 and FL 2) along with 3 regenerative-like (RL 1, RL 2, and RL 3) subpopulations of macrophages, each of which was transcriptionally distinct. We found that regenerative and fibrotic conditions had similar compositions of proinflammatory and anti-inflammatory macrophages, suggesting that macrophage polarization state did not correlate with healing outcomes. Receptor/ligand analysis of macrophage-to-mesenchymal progenitor cell crosstalk showed enhanced transforming growth factor β in fibrotic conditions and enhanced platelet-derived growth factor signaling in regenerative conditions. CONCLUSION Characterization of macrophage subtypes could be used to predict fibrotic responses following injury and provide a therapeutic target to tune the healing microenvironment towards more regenerative conditions.
Collapse
Affiliation(s)
- Ashish R. Chowdary
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75235
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dominic Henn
- Department of Plastic Surgery, University of Texas Southwestern, Dallas, TX, 75235
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chase A. Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75235
| | - Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, FL 32611, USA
| | - Katherine Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J. Tower
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75235
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75235
| |
Collapse
|
7
|
Chatterjee M, Acosta A, Taub PJ, Andarawis-Puri N. Enhanced healing outcomes in MRL/MpJ mouse tissues conserved in insertion site following surgical repair. J Shoulder Elbow Surg 2022; 31:e593-e602. [PMID: 35598836 DOI: 10.1016/j.jse.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Surgical repair of supraspinatus tendons (SSTs) has a high failure rate at the insertion site. A significant hurdle to therapeutic development is that effective intrinsic healing mechanisms are unknown. The MRL/MpJ (MRL) mouse exhibits tissue-specific enhanced healing; however, these tissues exhibit disparate properties from the complex SST. The extent of SST healing in the complex environment of the rotator cuff is unknown. We hypothesized that MRL mice would exhibit enhanced restoration of the structurally complex insertion site, resulting in functional improvements. METHODS B6 and MRL mice underwent SST detachment and immediate surgical repair. Mice were analyzed for gait assessment after either 2 or 6 weeks and were then killed humanely for immunohistologic analysis. RESULTS MRL SSTs demonstrated enhanced recovery of zonal architecture and bone structure compared with B6 SSTs. MRL SSTs exhibited decreased levels of type III collagen at 2 weeks and increased levels of type I procollagen at 6 weeks compared with B6 SSTs. MRL mice experienced initial gait deficits at 2 weeks that had recovered by 6 weeks. DISCUSSION The temporal balance of collagen in MRL mice suggests recovery toward naive composition. Initial gait deficits in MRL mice may provide a protective loading environment that is ultimately beneficial. The mechanisms of enhanced healing observed previously in MRL mice may be conserved in the complex SST, providing a platform to interrogate specific aspects of improved healing.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ashley Acosta
- Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J Taub
- Plastic and Reconstructive Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelly Andarawis-Puri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
8
|
Marvin JC, Mochida A, Paredes J, Vaughn B, Andarawis-Puri N. Detergent-Free Decellularization Preserves the Mechanical and Biological Integrity of Murine Tendon. Tissue Eng Part C Methods 2022; 28:646-655. [PMID: 36326204 PMCID: PMC9807253 DOI: 10.1089/ten.tec.2022.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Tissue decellularization has demonstrated widespread applications across numerous organ systems for tissue engineering and regenerative medicine applications. Decellularized tissues are expected to retain structural and/or compositional features of the natural extracellular matrix (ECM), enabling investigation of biochemical factors and cell-ECM interactions that drive tissue homeostasis, healing, and disease. However, the dense collagenous tendon matrix has limited the efficacy of traditional decellularization strategies without the aid of harsh chemical detergents and/or physical agitation that disrupt tissue integrity and denature proteins involved in regulating cell behavior. In this study, we adapted and established the advantages of a detergent-free decellularization method that relies on latrunculin B actin destabilization, alternating hypertonic-hypotonic salt and water incubations, nuclease-assisted elimination of cellular material, and protease inhibitor supplementation under aseptic conditions. Our method maintained the collagen molecular structure (i.e., minimal extent of denaturation), while adequately removing cells and preserving bulk mechanical properties. Furthermore, we demonstrated that decellularized tendon ECM-derived coatings isolated from different mouse strains, injury states (i.e., naive and acutely injured/"provisional"), and anatomical sites harness distinct biochemical cues and robustly maintain tendon cell viability in vitro. Together, our work provides a simple and scalable decellularization method to facilitate mechanistic studies that will expand our fundamental understanding of tendon ECM and cell biology. Impact statement In this study, we present a decellularization method for tendon that does not rely on any detergent or physical processing techniques. We assessed the impact of detergent-free decellularization using tissue, cellular, and molecular level analyses and validated the preservation of gross fiber architecture, collagen molecular structure, and extracellular matrix (ECM)-associated biological cues that are essential for studying physiological cell-ECM interactions. Finally, we demonstrated the applicability of this method for healthy and injured tendon environments, across mouse strains, and for different types of tendons, illustrating the utility of this approach for isolating the contributions of biochemical cues within unique tendon ECM microenvironments.
Collapse
Affiliation(s)
- Jason C. Marvin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ai Mochida
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Juan Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Brenna Vaughn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
9
|
Silva-Martínez M, Olmos-Zuñiga JR, Calyeca J, Baltazares-Lipp M, Gaxiola-Gaxiola M, Nachón-Acosta A, Pensado-Piedra LE, Juárez-Hernández F, Sotelo-Robledo R, Jasso-Victoria R, Luna-Flores A, Vázquez-Minero JC. Clinical, Histological, and Profibrotic Extracellular Matrix Protein Changes in a Model of Tracheal Stenosis Induced by Cervical Tracheal Autotransplantation. J INVEST SURG 2022; 35:1551-1561. [PMID: 35649711 DOI: 10.1080/08941939.2022.2081388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Tracheal stenosis (TS) is a complication of prolonged intubation, tracheotomy, and tracheal surgery that compromises the vascular supply. Animal models are essential for studying its pathophysiology and the effect of interventions. OBJECTIVE To establish a TS model in rats secondary to tracheal autotransplantation with a graft submerged in bleomycin (Atx-Bleo). Additionally, to evaluate the clinical and histological changes, as well as the expression of newly formed collagen (NFC), isoforms of transforming growth factor beta (TGFβ), fibronectin (FN), elastin (ELN), integrin β1 (ITGβ1), and matrix metalloproteinase 1 (MMP1) in TS. METHODS Twenty Wistar rats were divided into three groups: group I (n = 20) control; group II (n = 10) end-to-end anastomosis of the trachea (tracheoplasty); and group III (n = 10) Atx-Bleo. The animals were evaluated clinically, tomographically, macroscopically, morphometrically, and microscopically. NFC deposition, and the expression of profibrotic and antifibrotic proteins were evaluated in tracheal scars. RESULTS All animals survived the surgical procedure and the study period. Compared with the other study groups, the Atx-Bleo group developed TS and fibrosis, exhibited higher expression of NFC, TGFβ1, TGFβ2, FN, ELN, and ITGβ1, and mild expression of TGFβ3 and MMP1 (p < 0.005; analysis of variance, Dunnett and Tukey tests). CONCLUSION Atx-Bleo in TS model rats produces tomographic and histological changes, and induces the upregulation of profibrotic proteins (TGFβ1, TGFβ2, collagen, FN, ELN, ITGβ1) and downregulation of antifibrotic proteins (TGFβ3, MMP1). Therefore, this model may be used to test new pharmacological treatments for reversing or preventing TS, and conduct basic studies regarding its pathophysiology.
Collapse
Affiliation(s)
- Mariana Silva-Martínez
- Experimental Lung Transplant Unit of the Department of Experimental Surgery, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - J Raúl Olmos-Zuñiga
- Experimental Lung Transplant Unit of the Department of Experimental Surgery, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Jazmin Calyeca
- Division of Pulmonary, Critical and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lun Research Institute, Ohio State University, Columbus, Ohio, USA
| | - Matilde Baltazares-Lipp
- Experimental Surgery Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Miguel Gaxiola-Gaxiola
- Morphology Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Andrea Nachón-Acosta
- Experimental Lung Transplant Unit of the Department of Experimental Surgery, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Lya Edith Pensado-Piedra
- Imaging Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Fortunato Juárez-Hernández
- Imaging Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Roberto Sotelo-Robledo
- Imaging Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Rogelio Jasso-Victoria
- Experimental Surgery Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Antonia Luna-Flores
- Experimental Lung Transplant Unit of the Department of Experimental Surgery, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Juan Carlos Vázquez-Minero
- Subdirection of Surgery, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
10
|
Kallenbach JG, Freeberg MAT, Abplanalp D, Alenchery RG, Ajalik RE, Muscat S, Myers JA, Ashton JM, Loiselle A, Buckley MR, van Wijnen AJ, Awad HA. Altered TGFB1 regulated pathways promote accelerated tendon healing in the superhealer MRL/MpJ mouse. Sci Rep 2022; 12:3026. [PMID: 35194136 PMCID: PMC8863792 DOI: 10.1038/s41598-022-07124-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
To better understand the molecular mechanisms of tendon healing, we investigated the Murphy Roth's Large (MRL) mouse, which is considered a model of mammalian tissue regeneration. We show that compared to C57Bl/6J (C57) mice, injured MRL tendons have reduced fibrotic adhesions and cellular proliferation, with accelerated improvements in biomechanical properties. RNA-seq analysis revealed that differentially expressed genes in the C57 healing tendon at 7 days post injury were functionally linked to fibrosis, immune system signaling and extracellular matrix (ECM) organization, while the differentially expressed genes in the MRL injured tendon were dominated by cell cycle pathways. These gene expression changes were associated with increased α-SMA+ myofibroblast and F4/80+ macrophage activation and abundant BCL-2 expression in the C57 injured tendons. Transcriptional analysis of upstream regulators using Ingenuity Pathway Analysis showed positive enrichment of TGFB1 in both C57 and MRL healing tendons, but with different downstream transcriptional effects. MRL tendons exhibited of cell cycle regulatory genes, with negative enrichment of the cell senescence-related regulators, compared to the positively-enriched inflammatory and fibrotic (ECM organization) pathways in the C57 tendons. Serum cytokine analysis revealed decreased levels of circulating senescence-associated circulatory proteins in response to injury in the MRL mice compared to the C57 mice. These data collectively demonstrate altered TGFB1 regulated inflammatory, fibrosis, and cell cycle pathways in flexor tendon repair in MRL mice, and could give cues to improved tendon healing.
Collapse
Affiliation(s)
- Jacob G Kallenbach
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Margaret A T Freeberg
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - David Abplanalp
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Rahul G Alenchery
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Raquel E Ajalik
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Samantha Muscat
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacquelyn A Myers
- UR Genomics Research Center (GRC), University of Rochester Medical Center, Rochester, NY, USA
| | - John M Ashton
- UR Genomics Research Center (GRC), University of Rochester Medical Center, Rochester, NY, USA
| | - Alayna Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Hani A Awad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.
| |
Collapse
|
11
|
He P, Ruan D, Huang Z, Wang C, Xu Y, Cai H, Liu H, Fei Y, Heng BC, Chen W, Shen W. Comparison of Tendon Development Versus Tendon Healing and Regeneration. Front Cell Dev Biol 2022; 10:821667. [PMID: 35141224 PMCID: PMC8819183 DOI: 10.3389/fcell.2022.821667] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Tendon is a vital connective tissue in human skeletal muscle system, and tendon injury is very common and intractable in clinic. Tendon development and repair are two closely related but still not fully understood processes. Tendon development involves multiple germ layer, as well as the regulation of diversity transcription factors (Scx et al.), proteins (Tnmd et al.) and signaling pathways (TGFβ et al.). The nature process of tendon repair is roughly divided in three stages, which are dominated by various cells and cell factors. This review will describe the whole process of tendon development and compare it with the process of tendon repair, focusing on the understanding and recent advances in the regulation of tendon development and repair. The study and comparison of tendon development and repair process can thus provide references and guidelines for treatment of tendon injuries.
Collapse
Affiliation(s)
- Peiwen He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Zizhan Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Honglu Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Hengzhi Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School of Stomatology, Bejing, China
| | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| |
Collapse
|
12
|
Paredes J, Pekmezian A, Andarawis-Puri N. MRL/MpJ tendon matrix-derived therapeutic promotes improved healing outcomes in scar-mediated canonical tendon healing. J Orthop Res 2021; 39:1548-1560. [PMID: 32441819 PMCID: PMC7680300 DOI: 10.1002/jor.24754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/10/2020] [Accepted: 05/08/2020] [Indexed: 02/04/2023]
Abstract
Tendons are commonly injured connective soft tissues characterized by an ineffective healing response that results in scar formation and loss of functional and structural properties. Naturally occurring extracellular matrix (ECM) constructs have become a promising therapeutic for tendon injuries due to their capacity to harness a complex biological environment. However, in tendon, the ECM properties needed for improved healing remain unknown. Interestingly, we have determined that the improved tendon healing response of the scarless-healing MRL/MpJ is driven by intrinsic properties with therapeutic potential to modulate the proliferative and morphological behavior of cells derived from a canonically healing model in vitro. We hypothesize that a distinct composition of ECM deposited during the early healing response of the MRL/MpJ will harnesses the biological cues to stimulate improved structure and function in vivo of canonically healing B6 mice. Accordingly, MRL/MpJ and B6 patellar tendons were injured via midsubstance punch defects. Healing tendons were isolated after 3 or 7 days and encapsulated in PEG-4MAL hydrogels to develop ECM-derived therapeutic constructs. Constructs were then introduced into B6 mice as a treatment following full thickness midsubstance-punch injuries. Treatment with ECM-derived constructs from MRL/MpJ tendons after 7-days post-injury (M7) resulted in improved matrix alignment, tissue stiffness, decreased collagen III content and improved cell morphology in B6 tendons after 6 weeks post-injury. Furthermore, proteomic analysis showed that M7 contained a unique compositional profile rich in glycoproteins, thereby elucidating a valuable naturally-derived platform for the treatment of tendon injuries. Overall this work highlights promising targets for future therapeutic development and tissue engineering applications.
Collapse
Affiliation(s)
- Juan Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Ashley Pekmezian
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York,Hospital for Special Surgery, New York, New York
| |
Collapse
|
13
|
George NS, Bell R, Paredes JJ, Taub PJ, Andarawis-Puri N. Superior mechanical recovery in male and female MRL/MpJ tendons is associated with a unique genetic profile. J Orthop Res 2021; 39:1344-1354. [PMID: 32352601 PMCID: PMC7606617 DOI: 10.1002/jor.24705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 02/04/2023]
Abstract
Tendon ruptures heal by forming a mechanically inferior scar. We have shown that male Murphy Roths large (MRL/MpJ) mice exhibit improved tendon healing, suggesting that they can inform biological mechanisms that lead to effective tendon healing. As sex impacts healing, we assessed the effect of sex on tendon healing in MRL/MpJ and normal healer C57BL/6 (B6) mice and compared the associated biological environment with identify genes that may be integral to the improved healing outcome. We hypothesized that (a) male MRL/MpJ mice will heal with improved mechanical properties compared to females; and (b) that regenerative tendon healing will be associated with decreased fibrotic pathways, decreased inflammation, and increased activity of matrix metalloproteinases (MMPs). A midsubstance punch was introduced, and tendons were harvested after (a) 1 or 7 days for profiling of 84 genes; (b) 7 or 14 days for the assessment of MMP-2 and MMP-9 activity; and (c) 6 weeks for mechanical assessment. MRL/MpJ tendons healed with the better restoration of mechanical properties than B6 tendons. Sex did not affect the mechanical properties of healing B6 or MRL/MpJ tendons. Comparison of the gene expression profiles in the context of the mechanical outcome revealed several differences between MRL/MpJ and B6 tendon healing, including, lower inflammation, an earlier higher expression of TGF-β-related genes that diminish by 7 days, and genes associated with enhanced cell migration in MRL/MpJ in comparison to B6 tendons. We expect that the timecourse and expression levels of these genes in scarless MRL/MpJ tendon healing represent the balanced environment that leads to improved tendon healing.
Collapse
Affiliation(s)
- Nisha S. George
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rebecca Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - J. J. Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Peter J. Taub
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
- Hospital for Special Surgery Research Division, New York, New York
| |
Collapse
|
14
|
Kaji DA, Howell KL, Balic Z, Hubmacher D, Huang AH. Tgfβ signaling is required for tenocyte recruitment and functional neonatal tendon regeneration. eLife 2020; 9:51779. [PMID: 32501213 PMCID: PMC7324157 DOI: 10.7554/elife.51779] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Tendon injuries are common with poor healing potential. The paucity of therapies for tendon injuries is due to our limited understanding of the cells and molecular pathways that drive tendon regeneration. Using a mouse model of neonatal tendon regeneration, we identified TGFβ signaling as a major molecular pathway that drives neonatal tendon regeneration. Through targeted gene deletion, small molecule inhibition, and lineage tracing, we elucidated TGFβ-dependent and TGFβ-independent mechanisms underlying tendon regeneration. Importantly, functional recovery depended on canonical TGFβ signaling and loss of function is due to impaired tenogenic cell recruitment from both Scleraxis-lineage and non-Scleraxis-lineage sources. We show that TGFβ signaling is directly required in neonatal tenocytes for recruitment and that TGFβ ligand is positively regulated in tendons. Collectively, these results show a functional role for canonical TGFβ signaling in tendon regeneration and offer new insights toward the divergent cellular activities that distinguish regenerative vs fibrotic healing.
Collapse
Affiliation(s)
- Deepak A Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Kristen L Howell
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Zerina Balic
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Dirk Hubmacher
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
15
|
Paredes J, Marvin JC, Vaughn B, Andarawis-Puri N. Innate tissue properties drive improved tendon healing in MRL/MpJ and harness cues that enhance behavior of canonical healing cells. FASEB J 2020; 34:8341-8356. [PMID: 32350938 DOI: 10.1096/fj.201902825rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
Development of tendon therapeutics has been hindered by the lack of informative adult mammalian models of regeneration. Murphy Roth's Large (MRL/MpJ) mice exhibit improved healing following acute tendon injuries, but the driver of this regenerative healing response remains unknown. The tissue-specific attributes of this healing response, despite a shared systemic environment within the mouse, support the hypothesis of a tissue-driven mechanism for scarless healing. Our objective was to investigate the potential of MRL/MpJ tendon extracellular matrix (ECM)-derived coatings to regulate scar-mediated healing. We found that deviations in the composition of key structural proteins within MRL/MpJ vs C57Bl/6 tendons occur synergistically to mediate the improvements in structure and mechanics following a 1-mm midsubstance injury. Improvement in mechanical properties of healing MRL/MpJ vs C57Bl/6 tendons that were isolated from systemic contributions via organ culture, highlighted the innate tendon environment as the driver of scarless healing. Finally, we established that decellularized coatings derived from early-deposited MRL/MpJ tendon provisional extracellular matrix (provisional-ECM), can modulate canonical healing B6 tendon cell behavior by inducing morphological changes and increasing proliferation in vitro. This study supports that the unique compositional cues in MRL/MpJ provisional-ECM have the therapeutic capability to motivate canonically healing cells toward improved behavior; enhancing our ability to develop effective therapeutics.
Collapse
Affiliation(s)
- Juan Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jason C Marvin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Brenna Vaughn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
16
|
Talarek JR, Piacentini AN, Konja AC, Wada S, Swanson JB, Nussenzweig SC, Dines JS, Rodeo SA, Mendias CL. The MRL/MpJ Mouse Strain Is Not Protected From Muscle Atrophy and Weakness After Rotator Cuff Tear. J Orthop Res 2020; 38:811-822. [PMID: 31696955 PMCID: PMC7071998 DOI: 10.1002/jor.24516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/04/2019] [Indexed: 02/04/2023]
Abstract
Chronic rotator cuff tears are a common source of shoulder pain and disability. Patients with rotator cuff tears often have substantial weakness, fibrosis, and fat accumulation, which limit successful surgical repair and postoperative rehabilitation. The Murphy Roths Large (MRL) strain of mice have demonstrated superior healing and protection against pathological changes in several disease and injury conditions. We tested the hypothesis that, compared with the commonly used C57Bl/6 (B6) strain, MRL mice would have less muscle fiber atrophy and fat accumulation, and be protected against the loss in force production that occurs after cuff tear. Adult male B6 and MRL mice were subjected to a rotator cuff tear, and changes in muscle fiber contractility and histology were measured. RNA sequencing and shotgun metabolomics and lipidomics were also performed. The muscles were harvested one month after tear. B6 and MRL mice had a 40% reduction in relative muscle force production after rotator cuff tear. RNA sequencing identified an increase in fibrosis-associated genes and a reduction in mitochondrial metabolism genes. The markers of glycolytic metabolism increased in B6 mice, while MRL mice appeared to increase amino acid metabolism after tear. There was an accumulation of lipid after injury, although there was a divergent response between B6 and MRL mice in the types of lipid species that accrued. There were strain-specific differences between the transcriptome, metabolome, and lipidome of B6 and MRL mice, but these differences did not protect MRL mice from weakness and pathological changes after rotator cuff tear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:811-822, 2020.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joshua S Dines
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
| | - Scott A Rodeo
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
| | - Christopher L Mendias
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
- Corresponding Author: Christopher Mendias, PhD, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, USA, +1 212-606-1785 office, +1 212-249-2373 fax,
| |
Collapse
|
17
|
Frankewycz B, Cimino D, Andarawis-Puri N. Murine patellar tendon transplantation requires transosseous cerclage augmentation - development of a transplantation model for investigation of systemic and local drivers to healing. J Orthop Surg Res 2019; 14:410. [PMID: 31791383 PMCID: PMC6889740 DOI: 10.1186/s13018-019-1475-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/14/2019] [Indexed: 11/18/2022] Open
Abstract
Background Tendon injuries are common musculoskeletal injuries that heal with scar tissue formation, often achieving reduced biomechanical and functional properties. The murine patellar tendon is a research tool that holds potential for investigating tendon healing and can be useful for exploring therapeutic strategies. Since healing is a complex process that results from the collaboration between the systemic and local tissue environment, a murine tendon transplantation model that can be applied to transgenic mice and genetic mutants would allow isolation of systemic versus local tendon factors in driving effective tendon healing. Preliminary studies have shown that transplantation with simple tendon sutures results in a proximalization of the patellar bone due to the involuntary quadriceps muscle force leading to tearing of the graft and failure of the knee extensor mechanism. To avoid this elongation of the graft, two cerclage techniques for murine patellar tendon transplantation were introduced and validated. Methods Three developed surgical techniques (no-cerclage-augmentation (NCA)), transfascial suture cerclage with encirclement of the patellar tendon (TFSC), and dual-cerclage-augmentation with a transosseous bone-to-bone cerclage through the patella bone and an additional musculotendinous cerclage (DCA)) were compared at 4 and 8 weeks macroscopically in regards to graft continuity, cerclage integrity, gap formation, and radiologically by measuring the patello-tibial distance and using a patella bone position grading system. Results The NCA group showed complete failure at 5–7 days after surgery. The TFSC has led to 69% functional failure of the cerclage. In contrast, the DCA with a has led to 78% success with improvement in patellar bone position and a similar patello-tibial distance to the naïve contralateral murine knees over the time period of 8 weeks. Conclusions This study shows that a bone-to-bone cerclage is necessary to maintain a desired graft length in murine patellar tendon models. This surgery technique can serve for future graft trans- and implantations in the murine patellar tendon.
Collapse
Affiliation(s)
- Borys Frankewycz
- Sibley School of Mechanical and Aerospace Engineering, College of Engineering, Cornell University, Ithaca, NY, USA. .,Department of Trauma Surgery, Regensburg University Medical Center, Regensburg, Germany.
| | - Daniel Cimino
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, College of Engineering, Cornell University, Ithaca, NY, USA.,Hospital of Special Surgery, New York, NY, USA
| |
Collapse
|
18
|
Andarawis-Puri N, Flatow EL. Promoting effective tendon healing and remodeling. J Orthop Res 2018; 36:3115-3124. [PMID: 30175859 PMCID: PMC6608714 DOI: 10.1002/jor.24133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023]
Abstract
Daily activities subject our tendons to accumulation of sub-rupture fatigue injury which can lead to tendon rupture. Consequently, tendinopathies account for over 30% of musculoskeletal consultations. We adopted a multidisciplinary approach to determine the role of the extracellular matrix (ECM) in the pathogenesis of tendinopathy and impaired healing of ruptured tendons. We have been investigating three main areas: (i) the pathogenesis of tendon degeneration; (ii) approaches to promoting remodeling of sub-rupture fatigue injuries; and the (iii) role of the ECM in promoting scarless tendon healing. In this Kappa Delta Young Investigator award paper, we describe the key discoveries made in each of our three research areas of focus. Briefly, we discovered that sub-rupture fatigue damage can accumulate from just one bout of fatigue loading. Furthermore, any attempt to repair the fatigue damage diminishes as the severity of induced damage increases. We have utilized exercise to develop animal models of exercise-led degeneration and exercise-led repair of sub-rupture fatigue damage injuries, wherein underlying mechanisms can be uncovered, thereby overcoming a major hurdle to development of therapeutics. Since damage accumulation ultimately leads to rupture that is characterized by formation of a mechanically inferior scar, we have used the MRL/MpJ mouse to evaluate the role of the systemic environment and the local tendon environment in driving regeneration to identify new therapeutic pathways to promote scarless healing. Our data suggests that the therapeutic potential of the MRL/MpJ provisional ECM should be further explored as it may harness biological and structural mechanisms to promote scarless healing. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3115-3124, 2018.
Collapse
Affiliation(s)
- Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
- Hospital for Special Surgery, New York, New York
| | - Evan L. Flatow
- Department of Orthopaedic Surgery, Mount Sinai West, New York, New York
| |
Collapse
|
19
|
Affiliation(s)
- Dianne Little
- a Department of Basic Medical Sciences and Department of Biomedical Engineering , Purdue University , West Lafayette , IN , USA
| |
Collapse
|