1
|
De S, Sahu R, Palei S, Narayan Nanda L. Synthesis, SAR, and application of JQ1 analogs as PROTACs for cancer therapy. Bioorg Med Chem 2024; 112:117875. [PMID: 39178586 DOI: 10.1016/j.bmc.2024.117875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
JQ1 is a wonder therapeutic molecule that selectively inhibits the BRD4 signaling pathway and is thus widely used in the anticancer drug discovery program. Due to its unique selective BRD4 binding property, its applications are further extended in the design and synthesis of bi-functional PROTAC molecules. This BRD4 targeting PROTAC molecule selectively degrades the protein by proteolysis. There are several modifications of JQ1 known to date and extensively explored for their applications in PROTAC technology by several research groups in academia as well as industry for targeting oncogenic genes. In this review, we have covered the discovery and synthesis of the JQ1 molecule. The SAR of the JQ1 analogs will help researchers develop potent JQ1 compounds with improved inhibitory properties against malignant cells. Furthermore, we explored the potential application of JQ1 analogs in PROTAC technology. The brief history of the bromodomain family of proteins, as well as the obstacles connected with PROTAC technology, can help comprehend the context of the current research, which has the potential to improve the drug development process. Overall, this review comprehensively appraises JQ1 molecules and their prior implementation in PROTAC technology and cancer therapy.
Collapse
Affiliation(s)
- Soumik De
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India
| | - Raghaba Sahu
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Shubhendu Palei
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Laxmi Narayan Nanda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Harvard Medical School, Cambridge 02142, United States; P.G. Department of Chemistry, Government Autonomous College, Utkal University, Angul 759143, Odisha, India.
| |
Collapse
|
2
|
Liu X, Diao L, Zhang Y, Yang X, Zhou J, Mao Y, Shi X, Zhao F, Liu M. Piperlongumine Inhibits Titanium Particles-Induced Osteolysis, Osteoclast Formation, and RANKL-Induced Signaling Pathways. Int J Mol Sci 2022; 23:2868. [PMID: 35270008 PMCID: PMC8911227 DOI: 10.3390/ijms23052868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 11/21/2022] Open
Abstract
Wear particle-induced aseptic loosening is the most common complication of total joint arthroplasty (TJA). Excessive osteoclast formation and bone resorptive activation have been considered to be responsible for extensive bone destruction and prosthesis failure. Therefore, identification of anti-osteoclastogenesis agents is a potential therapy strategy for the treatment of aseptic loosening and other osteoclast-related osteolysis diseases. In the present study, we reported, for the first time, that piperlongumine (PL), a key alkaloid compound from Piper longum fruits, could significantly suppress the formation and activation of osteoclasts. Furthermore, PL effectively decreased the mRNA expressions of osteoclastic marker genes such as tartrate-resistant acid phosphatase (TRAP), calcitonin receptor (CTR), and cathepsin K (CTSK). In addition, PL suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced activations of MAPKs (ERK, JNK and p38) and NF-κB, which down-regulated the protein expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). Using a titanium (Ti) particle-induced calvarial osteolysis model, we demonstrated that PL could ameliorate Ti particle-induced bone loss in vivo. These data provide strong evidence that PL has the potential to treat osteoclast-related diseases including periprosthetic osteolysis (PPO) and aseptic loosening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (X.L.); (L.D.); (Y.Z.); (X.Y.); (J.Z.); (Y.M.); (X.S.); (F.Z.)
| |
Collapse
|
3
|
Liu Y, Liu W, Yu Z, Zhang Y, Li Y, Xie D, Xie G, Fan L, He S. A novel BRD4 inhibitor suppresses osteoclastogenesis and ovariectomized osteoporosis by blocking RANKL-mediated MAPK and NF-κB pathways. Cell Death Dis 2021; 12:654. [PMID: 34175898 PMCID: PMC8236062 DOI: 10.1038/s41419-021-03939-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) has emerged as a promising treatment target for bone-related disorders. (+)-JQ1, a thienotriazolodiazepine compound, has been shown to inhibit pro-osteoclastic activity in a BRD4-dependent approach and impede bone loss caused by ovariectomy (OVX) in vivo. However, clinical trials of (+)-JQ1 are limited because of its poor druggability. In this study, we synthesized a new (+)-JQ1 derivative differing in structure and chirality. One such derivative, (+)-ND, exhibited higher solubility and excellent inhibitory activity against BRD4 compared with its analogue (+)-JQ1. Interestingly, (-)-JQ1 and (-)-ND exhibited low anti-proliferative activity and had no significant inhibitory effect on RANKL-induced osteoclastogenesis as compared with (+)-JQ1 and (+)-ND, suggesting the importance of chirality in the biological activity of compounds. Among these compounds, (+)-ND displayed the most prominent inhibitory effect on RANKL-induced osteoclastogenesis. Moreover, (+)-ND could inhibit osteoclast-specific gene expression, F-actin ring generation, and bone resorption in vitro and prevent bone loss in OVX mice. Collectively, these findings indicated that (+)-ND represses RANKL-stimulated osteoclastogenesis and averts OVX-triggered osteoporosis by suppressing MAPK and NF-κB signalling cascades, suggesting that it may be a prospective candidate for osteoporosis treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wenjie Liu
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Ziqiang Yu
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yan Zhang
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Dantao Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Gang Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Li Fan
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
4
|
Zhang Y, Tian Y, Yang X, Zhao Z, Feng C, Zhang Y. MicroRNA‑21 serves an important role during PAOO‑facilitated orthodontic tooth movement. Mol Med Rep 2020; 22:474-482. [PMID: 32377742 PMCID: PMC7248476 DOI: 10.3892/mmr.2020.11107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Periodontal accelerate osteogenesis orthodontics (PAOO) is an extension of described techniques that surgically alter the alveolar bone; however, the specific mechanism underlying the technique is not completely understood. The aim of the present study was to evaluate the roles of microRNA (miR)-21 during PAOO. Sprague-Dawley rats were divided into the following four groups: i) Group tooth movement (TM), underwent TM and were administered normal saline (NS); ii) Group PAOO, underwent PAOO + TM and were administered NS; iii) Group agomiR-21, underwent PAOO + TM and were administered agomiR-21; and iv) Group antagomiR-21, underwent PAOO + TM and were administered antagomiR-21. To validate the rat model of PAOO, morphological analyses were performed and measurements were collected. Reverse transcription-quantitative PCR, western blotting and immunohistochemical staining were performed to examine the expression levels of programmed cell death 4 (PDCD4), activin A receptor type 2B (ACVR2b), receptor activator of NF-κΒ ligand (RANKL) and C-Fos. Dual-luciferase reporter assays were performed to validate PDCD4 as a target of miR-21 in vitro. Following 7 days of treatment, the TM distance of group PAOO was longer compared with groups TM and antagomiR-21 (P<0.05), but shorter compared with group agomiR-21 (P<0.05). Tartrate-resistant acid phosphatase staining indicated that following treatment with agomiR-21, osteoclast activity was notably increased, whereas the mRNA and protein expression levels of PDCD4 were notably decreased compared with group PAOO. The mRNA and protein expression levels of RANKL and C-Fos in group agomiR-21 were notably increased compared with group PAOO, whereas group antagomiR-21 displayed the opposite pattern (P<0.05). With regard to ACVR2b, no significant differences were observed among the group agomiR-21 and antagomiR-21 compared with group PAOO. Bioinformatics analysis predicted that PDCD4 was a potential target gene of miR-21, and dual-luciferase reporter assays demonstrated that miR-21 directly targeted PDCD4. In conclusion, the present study demonstrated that miR-21 serves an important role during PAOO-mediated orthodontic TM.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Yulou Tian
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Xiaofeng Yang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Zhenjin Zhao
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Cuijuan Feng
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Yang Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
5
|
Yu D, Zhao D, Yang D, Yang G. [Simvastatin promotes murine osteoclasts apoptosis in vitro through NFATc1 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:672-678. [PMID: 31270045 DOI: 10.12122/j.issn.1673-4254.2019.06.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the mechanism by which simvastatin (SIM) regulates osteoclast apoptosis. METHODS Murine macrophage RAW264.7 cells were divided into 5 groups, namely group A (control group), group B (sRANKL+ M-CSF), group C (SIM+sRANKL+M-CSF), group D (VIVIT peptide+sRANKL+ M-CSF), and group E (SIM+VIVIT peptide+sRANKL+M-CSF). WST-1 assay was used to assess the effects of simvastatin on the proliferation activity of the osteoclasts, and flow cytometry was performed to analyze the effects of SIM and VIVIVIT peptide (a NFATc1 pathway inhibitor) on apoptosis of the osteoclasts. The translocation of NFATc1 into the nucleus was investigated using immunofluorescence assay, and Western blotting was employed to assess the effect of SIM on the phosphorylation of NFATc1 in the nucleus. RESULTS WST-1 assay showed that SIM (1×10-6 mol/L) treatment for 24 and 48 h significantly inhibited the proliferation of the osteoclasts (P=0.039 and 0.022, respectively). Compared with the control group, the SIM-treated osteoclasts exhibited significantly reduced cell percentage in G0/G1 phase (P=0.041) and increased cells in sub-G1 phase (P=0.028) with obvious cell apoptosis. DAPI staining and flow cytometry showed that both SIM and VIVIVIT peptide alone significantly promoted osteoclast apoptosis (P=0.002 and 0.015, respectively), and their combination produced a similar pro-apoptosis effect (P=0.08). Immunofluorescence and Western blotting showed that SIM significantly inhibited the intranuclear translocation of NFATc1 and the phosphorylation of NFATc1 pathway protein (P=0.013). CONCLUSIONS SIM promotes osteoclast apoptosis through NFATc1 signaling pathway.
Collapse
Affiliation(s)
- Dongdong Yu
- Department of Orthopedics, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Danyang Zhao
- Department of Neurology, Shenyang First People's Hospital, Shenyang 110041, China
| | - Dongxiang Yang
- Department of Orthopedics, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Guanlin Yang
- Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, 110847
| |
Collapse
|