1
|
West VC, Owen KE, Inguito KL, Ebron KMM, Reiner TN, Mirack CE, Le CH, de Cassia Marqueti R, Snipes S, Mousavizadeh R, King RE, Elliott DM, Parreno J. Actin Polymerization Status Regulates Tenocyte Homeostasis Through Myocardin-Related Transcription Factor-A. Cytoskeleton (Hoboken) 2024. [PMID: 39601363 DOI: 10.1002/cm.21962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
The actin cytoskeleton is a potent regulator of tenocyte homeostasis. However, the mechanisms by which actin regulates tendon homeostasis are not entirely known. This study examined the regulation of tenocyte molecule expression by actin polymerization via the globular (G-) actin-binding transcription factor, myocardin-related transcription factor-a (MRTF). We determined that decreasing the proportion of G-actin in tenocytes by treatment with TGFβ1 increases nuclear MRTF. These alterations in actin polymerization and MRTF localization coincided with favorable alterations to tenocyte gene expression. In contrast, latrunculin A increases the proportion of G-actin in tenocytes and reduces nuclear MRTF, causing cells to acquire a tendinosis-like phenotype. To parse out the effects of F-actin depolymerization from regulation by MRTF, we treated tenocytes with cytochalasin D. Exposure of cells to cytochalasin D increases the proportion of G-actin in tenocytes. However, as compared to latrunculin A, cytochalasin D has a differential effect on MRTF localization by increasing nuclear MRTF. This led to an opposing effect on the regulation of a subset of genes. The differential regulation of genes by latrunculin A and cytochalasin D suggests that actin signals through MRTF to regulate a specific subset of genes. By targeting the deactivation of MRTF through the inhibitor CCG1423, we verify that MRTF regulates Type I Collagen, Tenascin C, Scleraxis, and α-smooth muscle actin in tenocytes. Actin polymerization status is a potent regulator of tenocyte homeostasis through the modulation of several downstream pathways, including MRTF. Understanding the regulation of tenocyte homeostasis by actin may lead to new therapeutic interventions against tendinopathies, such as tendinosis.
Collapse
Affiliation(s)
- Valerie C West
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Kaelyn E Owen
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Kameron L Inguito
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Karl Matthew M Ebron
- Department of Kinesiology and Applied Physiology, University of DE, Newark, Delaware, USA
| | - Tori N Reiner
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Chloe E Mirack
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Christian H Le
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Steven Snipes
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Rouhollah Mousavizadeh
- Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Rylee E King
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Justin Parreno
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Leahy TP, Chenna SS, Soslowsky LJ, Dyment NA. Focal adhesion kinase regulates tendon cell mechanoresponse and physiological tendon development. FASEB J 2024; 38:e70050. [PMID: 39259535 PMCID: PMC11522781 DOI: 10.1096/fj.202400151r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Tendons enable locomotion by transmitting high tensile mechanical forces between muscle and bone via their dense extracellular matrix (ECM). The application of extrinsic mechanical stimuli via muscle contraction is necessary to regulate healthy tendon function. Specifically, applied physiological levels of mechanical loading elicit an anabolic tendon cell response, while decreased mechanical loading evokes a degradative tendon state. Although the tendon response to mechanical stimuli has implications in disease pathogenesis and clinical treatment strategies, the cell signaling mechanisms by which tendon cells sense and respond to mechanical stimuli within the native tendon ECM remain largely unknown. Therefore, we explored the role of cell-ECM adhesions in regulating tendon cell mechanotransduction by perturbing the genetic expression and signaling activity of focal adhesion kinase (FAK) through both in vitro and in vivo approaches. We determined that FAK regulates tendon cell spreading behavior and focal adhesion morphology, nuclear deformation in response to applied mechanical strain, and mechanosensitive gene expression. In addition, our data reveal that FAK signaling plays an essential role in in vivo tendon development and postnatal growth, as FAK-knockout mouse tendons demonstrated reduced tendon size, altered mechanical properties, differences in cellular composition, and reduced maturity of the deposited ECM. These data provide a foundational understanding of the role of FAK signaling as a critical regulator of in situ tendon cell mechanotransduction. Importantly, an increased understanding of tendon cell mechanotransductive mechanisms may inform clinical practice as well as lead to the discovery of diagnostic and/or therapeutic molecular targets.
Collapse
Affiliation(s)
- Thomas P. Leahy
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Srish S. Chenna
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J. Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathaniel A. Dyment
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
West VC, Owen K, Inguito KL, Ebron KMM, Reiner T, Mirack CE, Le C, de Cassia Marqueti R, Snipes S, Mousavizadeh R, Elliott DM, Parreno J. Actin Polymerization Status Regulates Tendon Homeostasis through Myocardin-Related Transcription Factor-A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609684. [PMID: 39253450 PMCID: PMC11383320 DOI: 10.1101/2024.08.26.609684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The actin cytoskeleton is a potent regulator of tenocyte homeostasis. However, the mechanisms by which actin regulates tendon homeostasis are not entirely known. This study examined the regulation of tenocyte molecule expression by actin polymerization via the globular (G-) actin-binding transcription factor, myocardin-related transcription factor-a (MRTF). We determined that decreasing the proportion of G-actin in tenocytes by treatment with TGFβ1 increases nuclear MRTF. These alterations in actin polymerization and MRTF localization coincided with favorable alterations to tenocyte gene expression. In contrast, latrunculin A increases the proportion of G-actin in tenocytes and reduces nuclear MRTF, causing cells to acquire a tendinosis-like phenotype. To parse out the effects of F-actin depolymerization from regulation by MRTF, we treated tenocytes with cytochalasin D. Similar to latrunculin A treatment, exposure of cells to cytochalasin D increases the proportion of G-actin in tenocytes. However, unlike latrunculin A treatment, cytochalasin D increases nuclear MRTF. Compared to latrunculin A treatment, cytochalasin D led to opposing effects on the expression of a subset of genes. The differential regulation of genes by latrunculin A and cytochalasin D suggests that actin signals through MRTF to regulate a specific subset of genes. By targeting the deactivation of MRTF through the inhibitor CCG1423, we verify that MRTF regulates Type I Collagen, Tenascin C, Scleraxis, and α-smooth muscle actin in tenocytes. Actin polymerization status is a potent regulator of tenocyte homeostasis through the modulation of several downstream pathways, including MRTF. Understanding the regulation of tenocyte homeostasis by actin may lead to new therapeutic interventions against tendinopathies, such as tendinosis.
Collapse
Affiliation(s)
- Valerie C. West
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kaelyn Owen
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kameron L. Inguito
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | - Tori Reiner
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Chloe E. Mirack
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Christian Le
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Steven Snipes
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Rouhollah Mousavizadeh
- Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Justin Parreno
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
4
|
Cremasco Takano AP, Cury DP. A comprehensive guide to western blotting for tendon research. Anal Biochem 2024; 690:115528. [PMID: 38570024 DOI: 10.1016/j.ab.2024.115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Tendons are classified as dense fibrous connective tissue. This fibrous composition poses challenges in protein extraction, particularly hindering the application of Western blotting techniques. Because of these challenges, it becomes necessary to implement additional steps and specific solutions to attain success in this methodology with the tissue in question. The objective of this article is to provide a detailed protocol, elucidating each step, and making it easily replicable for researchers. The study focused on the Achilles tendons of Sprague-Dawley rats, emphasizing the need for a tailored approach in working with this tissue. By addressing the nuances of protein extraction from the dense and fibrous tendons, our protocol aims to facilitate the reproducibility of Western blotting experiments, contributing to a better understanding of this tissue.
Collapse
Affiliation(s)
- Ana Paula Cremasco Takano
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Diego Pulzatto Cury
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil; Department of Cellular Biology and Development, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Inguito KL, Schofield MM, Faghri AD, Bloom ET, Heino M, West VC, Ebron KMM, Elliott DM, Parreno J. Stress deprivation of tendon explants or Tpm3.1 inhibition in tendon cells reduces F-actin to promote a tendinosis-like phenotype. Mol Biol Cell 2022; 33:ar141. [PMID: 36129771 PMCID: PMC9727789 DOI: 10.1091/mbc.e22-02-0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 02/04/2023] Open
Abstract
Actin is a central mediator between mechanical force and cellular phenotype. In tendons, it is speculated that mechanical stress deprivation regulates gene expression by reducing filamentous (F)-actin. However, the mechanisms regulating tenocyte F-actin remain unclear. Tropomyosins (Tpms) are master regulators of F-actin. There are more than 40 Tpm isoforms, each having the unique capability to stabilize F-actin subpopulations. We investigated F-actin polymerization in stress-deprived tendons and tested the hypothesis that stress fiber-associated Tpm(s) stabilize F-actin to regulate cellular phenotype. Stress deprivation of mouse tail tendon down-regulated tenogenic and up-regulated protease (matrix metalloproteinase-3) mRNA levels. Concomitant with mRNA modulation were increases in G/F-actin, confirming reduced F-actin by tendon stress deprivation. To investigate the molecular regulation of F-actin, we identified that tail, Achilles, and plantaris tendons express three isoforms in common: Tpm1.6, 3.1, and 4.2. Tpm3.1 associates with F-actin in native and primary tenocytes. Tpm3.1 inhibition reduces F-actin, leading to decreases in tenogenic expression, increases in chondrogenic expression, and enhancement of protease expression in mouse and human tenocytes. These expression changes by Tpm3.1 inhibition are consistent with tendinosis progression. A further understanding of F-actin regulation in musculoskeletal cells could lead to new therapeutic interventions to prevent alterations in cellular phenotype during disease progression.
Collapse
Affiliation(s)
- Kameron L. Inguito
- Departments of Biological Sciences, University of Delaware, Newark, DE 19716
| | - Mandy M. Schofield
- Departments of Biological Sciences, University of Delaware, Newark, DE 19716
| | - Arya D. Faghri
- Departments of Biological Sciences, University of Delaware, Newark, DE 19716
| | - Ellen T. Bloom
- Biomedical Engineering, University of Delaware, Newark, DE 19716
| | - Marissa Heino
- Departments of Biological Sciences, University of Delaware, Newark, DE 19716
- Biomedical Engineering, University of Delaware, Newark, DE 19716
| | - Valerie C. West
- Biomedical Engineering, University of Delaware, Newark, DE 19716
| | | | - Dawn M. Elliott
- Biomedical Engineering, University of Delaware, Newark, DE 19716
| | - Justin Parreno
- Departments of Biological Sciences, University of Delaware, Newark, DE 19716
- Biomedical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
6
|
Rampin A, Skoufos I, Raghunath M, Tzora A, Diakakis N, Prassinos N, Zeugolis DI. Allogeneic Serum and Macromolecular Crowding Maintain Native Equine Tenocyte Function in Culture. Cells 2022; 11:1562. [PMID: 35563866 PMCID: PMC9103545 DOI: 10.3390/cells11091562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
The absence of a native extracellular matrix and the use of xenogeneic sera are often associated with rapid tenocyte function losses during in vitro culture. Herein, we assessed the influence of different sera (equine serum and foetal bovine serum) on equine tenocyte morphology, viability, metabolic activity, proliferation and protein synthesis as a function of tissue-specific extracellular matrix deposition (induced via macromolecular crowding), aging (passages 3, 6, 9) and time in culture (days 3, 5, 7). In comparison to cells at passage 3, at day 3, in foetal bovine serum and without macromolecular crowding (traditional equine tenocyte culture), the highest number of significantly decreased readouts were observed for cells in foetal bovine serum, at passage 3, at day 5 and day 7 and without macromolecular crowding. Again, in comparison to traditional equine tenocyte culture, the highest number of significantly increased readouts were observed for cells in equine serum, at passage 3 and passage 6, at day 7 and with macromolecular crowding. Our data advocate the use of an allogeneic serum and tissue-specific extracellular matrix for effective expansion of equine tenocytes.
Collapse
Affiliation(s)
- Andrea Rampin
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.R.); (I.S.); (A.T.)
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research, School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.R.); (I.S.); (A.T.)
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Athina Tzora
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.R.); (I.S.); (A.T.)
| | - Nikolaos Diakakis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
| | - Nikitas Prassinos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research, School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
7
|
Chatterjee M, Muljadi PM, Andarawis-Puri N. The role of the tendon ECM in mechanotransduction: disruption and repair following overuse. Connect Tissue Res 2022; 63:28-42. [PMID: 34030531 DOI: 10.1080/03008207.2021.1925663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Tendon overuse injuries are prevalent conditions with limited therapeutic options to halt disease progression. The specialized extracellular matrix (ECM) both enables joint function and mediates mechanical signals to tendon cells, driving biological responses to exercise or injury. With overuse, tendon ECM composition and structure changes at multiple scales, disrupting mechanotransduction and resulting in inadequate repair and disease progression. This review highlights the multiscale ECM changes that occur with tendon overuse and corresponding effects on cell-matrix interactions and cellular response to load.Results: Different functional joint requirements and tendon types experience a wide range of loading profiles, creating varied downstream mechanical stimuli. Distinct ECM structure and mechanical properties within the fascicle matrix, interfascicle matrix, and enthesis and their varied disruption with overuse are considered. The pericellular matrix (PCM) comprising the microscale tendon cell environment has a unique composition that changes with overuse injury and exercise, suggesting an important role in mechanotransduction and promoting repair. Cell-matrix interactions are mediated by structures including cilia, integrins, connexins and cytoskeleton that signal downstream homeostasis, adaptation, or repair. ECM disruption with tendon overuse may cause altered mechanical loading and cell-matrix interactions, resulting in mechanobiological understimulation, apoptosis, and ineffective repair. Current interventions to promote repair of tendon overuse injuries including exercise, targeting cell signaling, and modulating inflammation are considered.Conclusion: Future therapeutics should be assessed with regard of their effects on multiscale mechanotransduction in addition to joint function, with consideration of the central role of ECM.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. And Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Patrick M Muljadi
- Nancy E. And Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Nelly Andarawis-Puri
- Nancy E. And Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.,Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
8
|
Lewis KJ. Musculoskeletal mechanobiology. Connect Tissue Res 2022; 63:1-2. [PMID: 34781792 DOI: 10.1080/03008207.2021.2005172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Karl J Lewis
- Meinig School of Biomedical Engineering, Cornell University Weill Hall, 237 Tower Road Ithaca NY 14853
| |
Collapse
|
9
|
Bolam SM, Satokar VV, Konar S, Coleman B, Monk AP, Cornish J, Munro JT, Vickers MH, Albert BB, Musson DS. A Maternal High Fat Diet Leads to Sex-Specific Programming of Mechanical Properties in Supraspinatus Tendons of Adult Rat Offspring. Front Nutr 2021; 8:729427. [PMID: 34589513 PMCID: PMC8473632 DOI: 10.3389/fnut.2021.729427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Over half of women of reproductive age are now overweight or obese. The impact of maternal high-fat diet (HFD) is emerging as an important factor in the development and health of musculoskeletal tissues in offspring, however there is a paucity of evidence examining its effects on tendon. Alterations in the early life environment during critical periods of tendon growth therefore have the potential to influence tendon health that cross the lifespan. We hypothesised that a maternal HFD would alter biomechanical, morphological and gene expression profiles of adult offspring rotator cuff tendon. Materials and Methods: Female Sprague-Dawley rats were randomly assigned to either: control diet (CD; 10% kcal or 43 mg/g from fat) or HFD (45% kcal or 235 mg/g from fat) 14 days prior to mating and throughout pregnancy and lactation. Eight female and male offspring from each maternal diet group were weaned onto a standard chow diet and then culled at postnatal day 100 for tissue collection. Supraspinatus tendons were used for mechanical testing and histological assessment (cellularity, fibre organisation, nuclei shape) and tail tendons were collected for gene expression analysis. Results: A maternal HFD increased the elasticity (Young's Modulus) in the supraspinatus tendon of male offspring. Female offspring tendon biomechanical properties were not affected by maternal HFD. Gene expression of SCX and COL1A1 were reduced in male and female offspring of maternal HFD, respectively. Despite this, tendon histological organisation were similar between maternal diet groups in both sexes. Conclusion: An obesogenic diet during pregnancy increased tendon elasticity in male, but not female, offspring. This is the first study to demonstrate that maternal diet can modulate the biomechanical properties of offspring tendon. A maternal HFD may be an important factor in regulating adult offspring tendon homeostasis that may predispose offspring to developing tendinopathies and adverse tendon outcomes in later life.
Collapse
Affiliation(s)
- Scott M. Bolam
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Vidit V. Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Subhajit Konar
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
| | - Brendan Coleman
- Department of Orthopaedic Surgery, Middlemore Hospital, Auckland, New Zealand
| | - Andrew Paul Monk
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jillian Cornish
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
| | - Jacob T. Munro
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - David S. Musson
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Nutrition, University of Auckland, Auckland, New Zealand
| |
Collapse
|