1
|
Qi F, Li T, Deng Q, Fan A. The impact of aerobic and anaerobic exercise interventions on the management and outcomes of non-alcoholic fatty liver disease. Physiol Res 2024; 73:671-686. [PMID: 39530904 PMCID: PMC11629946 DOI: 10.33549/physiolres.935244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/25/2024] [Indexed: 12/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder that includes non-alcoholic hepatic steatosis without or with moderate inflammation and non-alcoholic steatohepatitis (NASH), characterized by necroinflammation and a more rapid progression of fibrosis. It is the primary pathological basis for hepatocellular carcinoma. With its prevalence escalating annually, NAFLD has emerged as a global health epidemic, presenting a significant hazard to public health worldwide. Existing studies have shown that physical activity and exercise training have a positive effect on NAFLD. However, the extent to which exercise improves NAFLD depends on the type, intensity, and duration. Therefore, the type of exercise that has the best effect on improving NAFLD remains to be explored. To date, the most valuable discussions involve aerobic and anaerobic exercise. Exercise intervenes in the pathological process of NAFLD by regulating physiological changes in cells through multiple signaling pathways. The review aims to summarize the signaling pathways affected by two different exercise types associated with the onset and progression of NAFLD. It provides a new basis for improving and managing NAFLD in clinical practice.
Collapse
Affiliation(s)
- F Qi
- Chongqing College of International Business and Economics, Southwest University, Chongqing, China, College of Physical Education, Southwest University, Chongqing, China.
| | | | | | | |
Collapse
|
2
|
Zou D, Liao J, Xiao M, Liu L, Xu M. Melatonin alleviates hyperoxia-induced lung injury through elevating MSC exosomal miR-18a-5p expression to repress PUM2 signaling. FASEB J 2024; 38:e70012. [PMID: 39183539 DOI: 10.1096/fj.202400374r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Mesenchymal stem cells (MSC)-derived exosomes (Exo) are a possible option for hyperoxia-induced lung injury (HLI). We wanted to see if melatonin (MT)-pretreated MSC-derived exosomes (MT-Exo) were more effective against HLI, and we also tried to figure out the underlying mechanism. HLI models were established by hyperoxia exposure. HE staining was adopted to analyze lung pathological changes. MTT and flow cytometry were used to determine cell viability and apoptosis, respectively. The mitochondrial membrane potential (MMP) was analyzed using the JC-1 probe. LDH, ROS, SOD, and GSH-Px levels were examined by the corresponding kits. The interactions between miR-18a-5p, PUM2, and DUB3 were analyzed by molecular interaction experiments. MT-Exo could effectively inhibit hyperoxia-induced oxidative stress, inflammatory injury, and apoptosis in lung epithelial cells, while these effects of MT-Exo were weakened by miR-18a-5p knockdown in MSCs. miR-18a-5p reduced PUM2 expression in MLE-12 cells by directly targeting PUM2. In addition, PUM2 inactivated the Nrf2/HO-1 signaling pathway by promoting DUB3 mRNA decay post-transcriptionally. As expected, PUM2 overexpression or DUB3 knockdown abolished the protective effect of MT-Exo on hyperoxia-induced lung epithelial cell injury. MT-Exo carrying miR-18a-5p reduced hyperoxia-mediated lung injury in mice through activating Nrf2/HO-1 pathway. MT reduced PUM2 expression and subsequently activated the DUB3/Nrf2/HO-1 signal axis by increasing miR-18a-5p expression in MSC-derived exosomes to alleviate HLI.
Collapse
Affiliation(s)
- Dongmei Zou
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Jinwen Liao
- The Department of Pediatric, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Min Xiao
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Liang Liu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Mingguo Xu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
- The Department of Pediatric, The Third People's Hospital of Longgang District Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Wang Z, Dong Z, Li Y, Jiao X, Liu Y, Chang H, Gan Y. Verapamil Attenuates the Severity of Tendinopathy by Mitigating Mitochondrial Dysfunction through the Activation of the Nrf2/HO-1 Pathway. Biomedicines 2024; 12:904. [PMID: 38672259 PMCID: PMC11048132 DOI: 10.3390/biomedicines12040904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Tendinopathy is a prevalent condition in orthopedics patients, exerting a profound impact on tendon functionality. However, its underlying mechanism remains elusive and the efficacy of pharmacological interventions continues to be suboptimal. Verapamil is a clinically used medicine with anti-inflammation and antioxidant functions. This investigation aimed to elucidate the impact of verapamil in tendinopathy and the underlying mechanisms through which verapamil ameliorates the severity of tendinopathy. In in vitro experiments, primary tenocytes were exposed to interleukin-1 beta (IL-1β) along with verapamil at a concentration of 5 μM. In addition, an in vivo rat tendinopathy model was induced through the localized injection of collagenase into the Achilles tendons of rats, and verapamil was injected into these tendons at a concentration of 5 μM. The in vitro findings highlighted the remarkable ability of verapamil to attenuate extracellular matrix degradation and apoptosis triggered by inflammation in tenocytes stimulated by IL-1β. Furthermore, verapamil was observed to significantly suppress the inflammation-related MAPK/NFκB pathway. Subsequent investigations revealed that verapamil exerts a remediating effect on mitochondrial dysfunction, which was achieved through activation of the Nrf2/HO-1 pathway. Nevertheless, the protective effect of verapamil was nullified with the utilization of the Nrf2 inhibitor ML385. In summary, the in vivo and in vitro results indicate that the administration of verapamil profoundly mitigates the severity of tendinopathy through suppression of inflammation and activation of the Nrf2/HO-1 pathway. These findings suggest that verapamil is a promising therapeutic agent for the treatment of tendinopathy, deserving further and expanded research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaokai Gan
- Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Huangpu District, Shanghai 200011, China; (Z.W.); (Z.D.); (Y.L.); (X.J.); (Y.L.); (H.C.)
| |
Collapse
|
4
|
Liu Y, Zhao Z, Guo C, Huang Z, Zhang W, Ma F, Wang Z, Kong Q, Wang Y. Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: a literature review. Front Cell Dev Biol 2023; 11:1286223. [PMID: 38130952 PMCID: PMC10733535 DOI: 10.3389/fcell.2023.1286223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Low back pain caused by disc herniation and spinal stenosis imposes an enormous medical burden on society due to its high prevalence and refractory nature. This is mainly due to the long-term inflammation and degradation of the extracellular matrix in the process of intervertebral disc degeneration (IVDD), which manifests as loss of water in the nucleus pulposus (NP) and the formation of fibrous disc fissures. Biomaterial repair strategies involving hydrogels play an important role in the treatment of intervertebral disc degeneration. Excellent biocompatibility, tunable mechanical properties, easy modification, injectability, and the ability to encapsulate drugs, cells, genes, etc. make hydrogels good candidates as scaffolds and cell/drug carriers for treating NP degeneration and other aspects of IVDD. This review first briefly describes the anatomy, pathology, and current treatments of IVDD, and then introduces different types of hydrogels and addresses "smart hydrogels". Finally, we discuss the feasibility and prospects of using hydrogels to treat IVDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Ma H, Yu Y, Mo L, Chen Q, Dong H, Xu Y, Zhuan B. Exosomal miR-663b from "M1" macrophages promotes pulmonary artery vascular smooth muscle cell dysfunction through inhibiting the AMPK/Sirt1 axis. Aging (Albany NY) 2023; 15:3549-3571. [PMID: 37142272 PMCID: PMC10449306 DOI: 10.18632/aging.204690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Inflammatory mediators from macrophages are proven to be involved in pulmonary vascular remodeling in pulmonary hypertension (PH). Here, this study intends to explore the mechanism of "M1" macrophage-derived exosomal miR-663b in pulmonary artery smooth muscle cells (PASMCs) dysfunctions and pulmonary hypertension. METHODS Hypoxia-treated PASMCs were utilized for constructing an in-vitro pulmonary hypertension model. THP-1 cells were treated with PMA (320 nM) and LPS (10 μg/mL) + IFN-γ (20 ng/ml) for eliciting macrophage "M1" polarization. Exosomes derived from "M1" macrophages were isolated and added into PASMCs. The proliferation, inflammation, oxidative stress, and migration of PASMCs were evaluated. RT-PCR or Western blot examined the levels of miR-663b and the AMPK/Sirt1 pathway. Dual luciferase activity assay and RNA pull-down assay were carried out for confirming the targeted association between miR-663b and AMPK. An in-vivo PH model was built. Macrophage-derived exosomes with miR-663b inhibition were used for treating the rats, and alterations of pulmonary histopathology were monitored. RESULTS miR-663b was obviously up-regulated in hypoxia-elicited PASMCs and M1 macrophages. miR-663b overexpression boosted hypoxia-induced proliferation, inflammation, oxidative stress, and migration in PASMCs, whereas miR-663b low expression resulted in the opposite situation. AMPK was identified as a target of miR-663b, and miR-663b overexpression curbed the AMPK/Sirt1 pathway. AMPK activation ameliorated the damaging impact of miR-663b overexpression and "M1" macrophage exosomes on PASMCs. In vivo, "M1" macrophage exosomes with miR-663b low expression alleviated pulmonary vascular remodeling in pulmonary hypertension rats. CONCLUSION Exosomal miR-663b from "M1" macrophage facilitates PASMC dysfunctions and PH development by dampening the AMPK/Sirt1 axis.
Collapse
Affiliation(s)
- Honghong Ma
- Department of Respiratory Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia, China
- Department of Respiratory Medicine, Third Clinical Medical College, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Yang Yu
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Lirong Mo
- Department of Respiratory Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia, China
- Department of Respiratory Medicine, Third Clinical Medical College, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Qian Chen
- Department of Respiratory Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia, China
- Department of Respiratory Medicine, Third Clinical Medical College, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Hui Dong
- General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Yan Xu
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Bing Zhuan
- Department of Respiratory Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia, China
- Department of Respiratory Medicine, Third Clinical Medical College, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
6
|
Zhu J, Sun R, Yan C, Sun K, Gao L, Zheng B, Shi J. Hesperidin mitigates oxidative stress-induced ferroptosis in nucleus pulposus cells via Nrf2/NF-κB axis to protect intervertebral disc from degeneration. Cell Cycle 2023; 22:1196-1214. [PMID: 37055945 PMCID: PMC10193898 DOI: 10.1080/15384101.2023.2200291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/11/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Intervertebral disc degeneration (IVDD), a widely known contributor to low back pain (LBP), has been proved to be a global health challenging conundrum. Hesperidin (hesperetin-7-O-rutinoside, HRD) is a flavanone glycoside that belongs to the subgroup of citrus flavonoids with therapeutic effect on various diseases due to its anti-inflammatory, antioxidant properties. However, the effect of HRD on IVDD remains elusive. The human nucleus pulposus tissues were harvested for isolating human nucleus pulposus (HNP) cells to verify the expression of Nrf2. The biological effect of HRD on HNP cells were assessed in vitro, and the in vivo therapeutic effects of HRD were assessed in mice. Firstly, we found that the expression of Nrf2 was decreased with the progression of degeneration in degenerated human nucleus pulposus tissue. Subsequently, we confirmed that HRD could mitigate oxidative stress-induced ferroptosis in nucleus pulposus cells via enhancing the expression of Nrf2 axis and suppressing the NF-κB pathway to protect intervertebral disc from degeneration in vitro. Finally, the therapeutic effects of HRD were confirmed in vivo. The current study proved for the first time that HRD may protect HNP cells from degeneration by suppressing ferroptosis in an oxidative stress-dependent via enhancing the expression of Nrf2 and suppressing the NF-κB pathway. The evidence will provide a possible basis for future targeted treatment for IVDD.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ruping Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Yan
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaiqiang Sun
- Department of Orthopaedic Surgery, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Lu Gao
- Department of Department of Physiology, Naval Medical University, Shanghai, China
| | - Bing Zheng
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Jiang C, Chen Z, Wang X, Zhang Y, Guo X, Xu Z, Yang H, Hao D. The potential mechanisms and application prospects of non-coding RNAs in intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1081185. [PMID: 36568075 PMCID: PMC9772433 DOI: 10.3389/fendo.2022.1081185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Low back pain (LBP) is one of the most common musculoskeletal symptoms and severely affects patient quality of life. The majority of people may suffer from LBP during their life-span, which leading to huge economic burdens to family and society. According to the series of the previous studies, intervertebral disc degeneration (IDD) is considered as the major contributor resulting in LBP. Furthermore, non-coding RNAs (ncRNAs), mainly including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), can regulate diverse cellular processes, which have been found to play pivotal roles in the development of IDD. However, the potential mechanisms of action for ncRNAs in the processes of IDD are still completely unrevealed. Therefore, it is challenging to consider ncRNAs to be used as the potential therapeutic targets for IDD. In this paper, we reviewed the current research progress and findings on ncRNAs in IDD: i). ncRNAs mainly participate in the process of IDD through regulating apoptosis of nucleus pulposus (NP) cells, metabolism of extracellular matrix (ECM) and inflammatory response; ii). the roles of miRNAs/lncRNAs/circRNAs are cross-talk in IDD development, which is similar to the network and can modulate each other; iii). ncRNAs have been attempted to combat the degenerative processes and may be promising as an efficient bio-therapeutic strategy in the future. Hence, this review systematically summarizes the principal pathomechanisms of IDD and shed light on the therapeutic potentials of ncRNAs in IDD.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhe Chen
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiaohui Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yongyuan Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xinyu Guo
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhengwei Xu
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hao Yang, ; Dingjun Hao,
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hao Yang, ; Dingjun Hao,
| |
Collapse
|