1
|
Wirth T, Balandraud N, Boyer L, Lafforgue P, Pham T. Biomarkers in psoriatic arthritis: A meta-analysis and systematic review. Front Immunol 2022; 13:1054539. [PMID: 36532039 PMCID: PMC9749424 DOI: 10.3389/fimmu.2022.1054539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Psoriatic arthritis (PsA) is a chronic inflammatory disease that frequently develops in patients with psoriasis (PsO) but can also occur spontaneously. As a result, PsA diagnosis and treatment is commonly delayed, or even missed outright due to the manifold of clinical presentations that patients often experience. This inevitably results in progressive articular damage to axial and peripheral joints and entheses. As such, patients with PsA frequently experience reduced expectancy and quality of life due to disability. More recently, research has aimed to improve PsA diagnosis and prognosis by identifying novel disease biomarkers. Methods Here, we conducted a systematic review of the published literature on candidate biomarkers for PsA diagnosis and prognosis in MEDLINE(Pubmed), EMBase and the Cochrane library with the goal to identify clinically applicable PsA biomarkers. Meta-analyses were performed when a diagnostic bone and cartilage turnover biomarker was reported in 2 or moredifferent cohorts of PsA and control. Results We identified 1444 publications and 124 studies met eligibility criteria. We highlighted bone and cartilage turnover biomarkers, genetic markers, and autoantibodies used for diagnostic purposes of PsA, as well as acute phase reactant markers and bone and cartilage turnover biomarkers for activity or prognostic severity purposes. Serum cartilage oligometrix metalloproteinase levels were significantly increased in the PsA sera compared to Healthy Control (HC) with a standardized mean difference (SMD) of 2.305 (95%CI 0.795-3.816, p=0.003) and compared to osteoarthritis (OA) with a SMD of 0.783 (95%CI 0.015-1.551, p=0.046). The pooled serum MMP-3 levels were significantly higher in PsA patients than in PsO patients with a SMD of 0.419 (95%CI 0.119-0.719; p=0.006), but no significant difference was highlighted when PsA were compared to HC. While we did not identify any new genetic biomarkers that would be useful in the diagnosis of PsA, recent data with autoantibodies appear to be promising in diagnosis, but no replication studies have been published. Conclusion In summary, no specific diagnostic biomarkers for PsA were identified and further studies are needed to assess the performance of potential biomarkers that can distinguish PsA from OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Theo Wirth
- Rheumatology Department, Sainte Marguerite Hospital, Aix-Marseille University, APHM, Marseille, France,*Correspondence: Theo Wirth,
| | - Nathalie Balandraud
- Rheumatology Department, Sainte Marguerite Hospital, Aix-Marseille University, APHM, Marseille, France,Autoimmune Arthritis Laboratory, INSERM UMRs1097, Aix Marseille University, Marseille, France
| | - Laurent Boyer
- School of Medicine, EA 3279, CEReSS, Research Center on Health Services and Quality of Life, Aix Marseille University, Marseille, France
| | - Pierre Lafforgue
- Rheumatology Department, Sainte Marguerite Hospital, Aix-Marseille University, APHM, Marseille, France
| | - Thao Pham
- Rheumatology Department, Sainte Marguerite Hospital, Aix-Marseille University, APHM, Marseille, France
| |
Collapse
|
2
|
Clemen R, Arlt K, Miebach L, von Woedtke T, Bekeschus S. Oxidized Proteins Differentially Affect Maturation and Activation of Human Monocyte-Derived Cells. Cells 2022; 11:cells11223659. [PMID: 36429087 PMCID: PMC9688260 DOI: 10.3390/cells11223659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
In cancer, antigen-presenting cells (APC), including dendritic cells (DCs), take up and process proteins to mount adaptive antitumor immune responses. This often happens in the context of inflamed cancer, where reactive oxygen species (ROS) are ubiquitous to modify proteins. However, the inflammatory consequences of oxidized protein uptake in DCs are understudied. To this end, we investigated human monocyte-derived cell surface marker expression and cytokine release profiles when exposed to oxidized and native proteins. Seventeen proteins were analyzed, including viral proteins (e.g., CMV and HBV), inflammation-related proteins (e.g., HO1 and HMGB1), matrix proteins (e.g., Vim and Coll), and vastly in the laboratory used proteins (e.g., BSA and Ova). The multifaceted nature of inflammation-associated ROS was mimicked using gas plasma technology, generating reactive species cocktails for protein oxidation. Fourteen oxidized proteins led to elevated surface marker expression levels of CD25, CD40, CD80, CD86, and MHC-II as well as strongly modified release of IL6, IL8, IL10, IL12, IL23, MCP-1, and TNFα compared to their native counterparts. Especially IL8, heme oxygenase 2, and vimentin oxidation gave pronounced effects. Furthermore, protein kinase phospho-array studies in monocyte-derived cells pulsed with native vs. oxidized IL8 and insulin showed enhanced AKT and RSK2 phosphorylation. In summary, our data provide for the first time an overview of the functional consequences of oxidized protein uptake by human monocyte-derived cells and could therefore be a starting point for exploiting such principle in anticancer therapy in the future.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Kevin Arlt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence:
| |
Collapse
|
3
|
Kaaij MH, Rip J, Jeucken KCM, Kan YY, van Rooijen CCN, Saris J, Pots D, Frey S, Grootjans J, Schett G, van Duivenvoorde LM, Nolte MA, Hendriks RW, Corneth OBJ, van Hamburg JP, Baeten DLP, Tas SW. Overexpression of Transmembrane TNF Drives Development of Ectopic Lymphoid Structures in the Bone Marrow and B Cell Lineage Alterations in Experimental Spondyloarthritis. THE JOURNAL OF IMMUNOLOGY 2021; 207:2337-2346. [PMID: 34561228 DOI: 10.4049/jimmunol.2100512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/22/2021] [Indexed: 12/23/2022]
Abstract
TNF is important in immune-mediated inflammatory diseases, including spondyloarthritis (SpA). Transgenic (tg) mice overexpressing transmembrane TNF (tmTNF) develop features resembling human SpA. Furthermore, both tmTNF tg mice and SpA patients develop ectopic lymphoid aggregates, but it is unclear whether these contribute to pathology. Therefore, we characterized the lymphoid aggregates in detail and studied potential alterations in the B and T cell lineage in tmTNF tg mice. Lymphoid aggregates developed in bone marrow (BM) of vertebrae and near the ankle joints prior to the first SpA features and displayed characteristics of ectopic lymphoid structures (ELS) including presence of B cells, T cells, germinal centers, and high endothelial venules. Detailed flow cytometric analyses demonstrated more germinal center B cells with increased CD80 and CD86 expression, along with significantly more T follicular helper, T follicular regulatory, and T regulatory cells in tmTNF tg BM compared with non-tg controls. Furthermore, tmTNF tg mice exhibited increased IgA serum levels and significantly more IgA+ plasma cells in the BM, whereas IgA+ plasma cells in the gut were not significantly increased. In tmTNF tg × TNF-RI-/- mice, ELS were absent, consistent with reduced disease symptoms, whereas in tmTNF tg × TNF-RII-/- mice, ELS and clinical symptoms were still present. Collectively, these data show that tmTNF overexpression in mice results in osteitis and ELS formation in BM, which may account for the increased serum IgA levels that are also observed in human SpA. These effects are mainly dependent on TNF-RI signaling and may underlie important aspects of SpA pathology.
Collapse
Affiliation(s)
- Merlijn H Kaaij
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; .,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jasper Rip
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kim C M Jeucken
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Yik Y Kan
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Charlotte C N van Rooijen
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Job Saris
- Department of Gastroenterology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Desiree Pots
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Silke Frey
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; and
| | - Joep Grootjans
- Department of Gastroenterology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; and
| | - Leonie M van Duivenvoorde
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijn A Nolte
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jan Piet van Hamburg
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; .,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Nygaard A, Hendricks O, Loft AG, Christiansen AA, Brandslund I, Jurik AG, Schiøttz-Christensen B. Complement C3d is not associated with axial spondyloarthritis and magnetic resonance imaging changes at the sacroiliac joint. Scand J Rheumatol 2021; 51:382-389. [PMID: 34470588 DOI: 10.1080/03009742.2021.1946255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: To investigate the associations between complement C3d and inflammatory and structural changes by magnetic resonance imaging (MRI) at the sacroiliac joints (SIJ) suggestive of axial spondyloarthritis, according to the Assessment of SpondyloArthritis international Society (ASAS) criteria, in patients with low back pain.Method: This was a cross-sectional study of patients referred to the Spine Centre of Southern Denmark owing to unspecified low back pain (Spines of Southern Denmark cohort). The patients were divided into three groups: group 1: patients fulfilling the ASAS criteria for axial spondyloarthritis (axSpA, n = 96); group 2: patients with either a positive MRI of the SIJ and no spondyloarthritis features, or a negative MRI of the SIJ but positive human leucocyte antigen-B27 and one spondyloarthritis feature (non-axSpA, n = 38); group 3: patients with unspecified low back pain for > 3 months (control group, n = 82). Complement C3d was measured with double-decker rocket immunoelectrophoresis and evaluated in relation to the group division and baseline findings by SIJ MRI.Results: In total, 184 C3d analyses were performed. The mean ± sd level of C3d was 33.8 ± 8.1 AU/mL. There were no differences in C3d levels between the three patient groups, mean values being: axSpA = 34.3 ± 7.9 AU/mL, non-axSpA = 33.5 ± 6.9 AU/mL, and controls = 33.4 ± 9.2 AU/mL. The level of C3d was not related to MRI findings.Conclusions: In these patients, complement C3d was not associated with active or structural SIJ changes on MRI suggestive of axial spondyloarthritis.
Collapse
Affiliation(s)
- A Nygaard
- Lillebaelt Hospital, University Hospital of Southern Denmark, Middelfart, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - O Hendricks
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Department of Rheumatology, The Danish Hospital for Rheumatology, Sonderborg, Denmark
| | - A G Loft
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - A A Christiansen
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Department of Rheumatology, The Danish Hospital for Rheumatology, Sonderborg, Denmark
| | - I Brandslund
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - A G Jurik
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - B Schiøttz-Christensen
- Lillebaelt Hospital, University Hospital of Southern Denmark, Middelfart, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Pouw JN, Leijten EFA, van Laar JM, Boes M. Revisiting B cell tolerance and autoantibodies in seropositive and seronegative autoimmune rheumatic disease (AIRD). Clin Exp Immunol 2020; 203:160-173. [PMID: 33090496 DOI: 10.1111/cei.13542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune rheumatic diseases (AIRD) are categorized seropositive or seronegative, dependent upon the presence or absence of specific autoreactive antibodies, including rheumatoid factor and anti-citrullinated protein antibodies. Autoantibody-based diagnostics have proved helpful in patient care, not only for diagnosis but also for monitoring of disease activity and prediction of therapy responsiveness. Recent work demonstrates that AIRD patients develop autoantibodies beyond those contained in the original categorization. In this study we discuss key mechanisms that underlie autoantibody development in AIRD: defects in early B cell development, genetic variants involved in regulating B cell and T cell tolerance, environmental triggers and antigen modification. We describe how autoantibodies can directly contribute to AIRD pathogenesis through innate and adaptive immune mechanisms, eventually culminating in systemic inflammation and localized tissue damage. We conclude by discussing recent insights that suggest distinct AIRD have incorrectly been denominated seronegative.
Collapse
Affiliation(s)
- J N Pouw
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E F A Leijten
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J M van Laar
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|