1
|
Tjandrawinata RR, Amalia N, Tandi YYP, Athallah AF, Afif Wibowo C, Aditya MR, Muhammad AR, Azizah MR, Humardani FM, Nojaid A, Christabel JA, Agnuristyaningrum A, Nurkolis F. The forgotten link: how the oral microbiome shapes childhood growth and development. FRONTIERS IN ORAL HEALTH 2025; 6:1547099. [PMID: 39989601 PMCID: PMC11842321 DOI: 10.3389/froh.2025.1547099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Childhood stunting, defined as impaired linear growth and development, remains a significant global health challenge with long-term consequences on cognitive and physical well-being. Emerging evidence highlights the pivotal role of the oral microbiome-a dynamic microbial ecosystem-in influencing nutritional status, immune response, and overall systemic health. This review explores the intricate interplay between the oral microbiome and stunting, emphasizing mechanisms such as microbial dysbiosis, its impact on nutrient absorption, and immune modulation. Disruptions in the oral microbiome can lead to nutrient malabsorption and systemic inflammation, further exacerbating growth impairments in children. Furthermore, the potential for microbiome-targeted diagnostics and interventions, including probiotics and prebiotics, offers novel strategies to address stunting. A deeper understanding of these interactions may inform innovative diagnostic tools and therapeutic interventions aimed at mitigating stunting through oral microbiome modulation. Integrating oral microbiome research into stunting prevention efforts could provide valuable insights for public health strategies to improve child growth and development, particularly in resource-limited settings. Future research should focus on elucidating the molecular pathways linking the oral microbiome to stunting and developing personalized interventions that optimize microbiome health in early life.
Collapse
Affiliation(s)
- Raymond Rubianto Tjandrawinata
- Center for Pharmaceutical and Nutraceutical Research and Policy, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Nurlinah Amalia
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Research Center of Indonesia, Surabaya, Indonesia
| | | | - Ariq Fadhil Athallah
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Caesaroy Afif Wibowo
- Medical Study Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Reva Aditya
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Athaya Rahmanardi Muhammad
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Maghfira Rahma Azizah
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | | | - Ammar Nojaid
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | | | | | - Fahrul Nurkolis
- Medical Research Center of Indonesia, Surabaya, Indonesia
- Master of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Wu T, Zeng Z, Yu Y. Role of Probiotics in Gut Microbiome and Metabolome in Non-Alcoholic Fatty Liver Disease Mouse Model: A Comparative Study. Microorganisms 2024; 12:1020. [PMID: 38792849 PMCID: PMC11124503 DOI: 10.3390/microorganisms12051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition worldwide. Numerous studies conducted recently have demonstrated a connection between the dysbiosis of the development of NAFLD and gut microbiota. Rebuilding a healthy gut ecology has been proposed as a strategy involving the use of probiotics. The purpose of this work is to investigate and compare the function of probiotics Akkermansia muciniphila (A. muciniphila) and VSL#3 in NAFLD mice. Rodent NAFLD was modeled using a methionine choline-deficient diet (MCD) with/without oral probiotic delivery. Subsequently, qPCR, histological staining, and liver function tests were conducted. Mass spectrometry-based analysis and 16S rDNA gene sequencing were used to investigate the liver metabolome and gut microbiota. We found that while both A. muciniphila and VSL#3 reduced hepatic fat content, A. muciniphila outperformed VSL#3. Furthermore, probiotic treatment restored the β diversity of the gut flora and A. muciniphila decreased the abundance of pathogenic bacteria such as Ileibacterium valens. These probiotics altered the metabolism in MCD mice, especially the glycerophospholipid metabolism. In conclusion, our findings distinguished the role of A. muciniphila and VSL#3 in NAFLD and indicated that oral-gavage probiotics remodel gut microbiota and improve metabolism, raising the possibility of using probiotics in the cure of NAFLD.
Collapse
Affiliation(s)
| | - Zheng Zeng
- Department of Infectious Diseases, Peking University First Hospital, Beijing 100034, China;
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Beijing 100034, China;
| |
Collapse
|
3
|
Hardjo J, Selene NB. Stunting and Gut Microbiota: A Literature Review. Pediatr Gastroenterol Hepatol Nutr 2024; 27:137-145. [PMID: 38818278 PMCID: PMC11134181 DOI: 10.5223/pghn.2024.27.3.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 06/01/2024] Open
Abstract
Stunting, a condition characterized by impaired growth and development in children, remains a major public health concern worldwide. Over the past decade, emerging evidence has shed light on the potential role of gut microbiota modulation in stunting. Gut microbiota dysbiosis has been linked to impaired nutrient absorption, chronic inflammation, altered short-chain fatty acid production, and perturbed hormonal and signaling pathways, all of which may hinder optimal growth in children. This review aims to provide a comprehensive analysis of existing research exploring the bidirectional relationship between stunting and the gut microbiota. Although stunting can alter the gut microbial community, microbiota dysbiosis may exacerbate it, forming a vicious cycle that sustains the condition. The need for effective preventive and therapeutic strategies targeting the gut microbiota to combat stunting is also discussed. Nutritional interventions, probiotics, and prebiotics are among the most promising approaches to modulate the gut microbiota and potentially ameliorate stunting outcomes. Ultimately, a better understanding of the gut microbiota-stunting nexus is vital for guiding evidence-based interventions that can improve the growth and development trajectory of children worldwide, making substantial strides toward reducing the burden of stunting in vulnerable populations.
Collapse
Affiliation(s)
- Jessy Hardjo
- Department of Emergency Medicine, General Hospital Ploso, East Java, Indonesia
| | | |
Collapse
|
4
|
Surono IS, Popov I, Verbruggen S, Verhoeven J, Kusumo PD, Venema K. Gut microbiota differences in stunted and normal-lenght children aged 36-45 months in East Nusa Tenggara, Indonesia. PLoS One 2024; 19:e0299349. [PMID: 38551926 PMCID: PMC10980242 DOI: 10.1371/journal.pone.0299349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/06/2024] [Indexed: 04/01/2024] Open
Abstract
The role of the gut microbiota in energy metabolism of the host has been established, both in overweight/obesity, as well as in undernutrition/stunting. Dysbiosis of the gut microbiota may predispose to stunting. The aim of this study was to compare the gut microbiota composition of stunted Indonesian children and non-stunted children between 36 and 45 months from two sites on the East Nusa Tenggara (ENT) islands. Fecal samples were collected from 100 stunted children and 100 non-stunted children in Kupang and North Kodi. The gut microbiota composition was determined by sequencing amplicons of the V3-V4 region of the 16S rRNA gene. Moreover, fecal SCFA concentrations were analyzed. The microbiota composition was correlated to anthropometric parameters and fecal metabolites. The phyla Bacteroidetes (Bacteroidota; q = 0.014) and Cyanobacteria (q = 0.049) were significantly higher in stunted children. Three taxa at genus levels were consistently significantly higher in stunted children at both sampling sites, namely Lachnoclostridium, Faecalibacterium and Veillonella (q < 7 * 10-4). These and 9 other taxa positively correlated to the z-score length-for-age (zlen), while 11 taxa negatively correlated with zlen. Several taxa also correlated with sanitary parameters, some of which were also significantly different between the two groups. All three fecal SCFA concentrations (acetate, propionate and butyrate) and their total were lower in stunted children compared to non-stunted children, although not significant for butyrate, indicating lower energy-extraction by the gut microbiota. Also, since SCFA have been shown to be involved in gut barrier function, barrier integrity may be affected in the stunted children. It remains to be seen if the three taxa are involved in stunting, or are changed due to e.g. differences in diet, hygiene status, or other factors. The observed differences in this study do not agree with our previous observations in children on Java, Indonesia. There are differences in infrastructure facilities such as clean water and sanitation on ENT and Java, which may contribute to the differences observed. The role of the gut microbiota in stunting therefore requires more in depth studies. Trial registration: the trial was registered at ClinicalTrials.gov with identifier number NCT05119218.
Collapse
Affiliation(s)
- Ingrid S. Surono
- Faculty of Engineering, Food Technology Department, Bina Nusantara University, Jakarta, Indonesia
| | - Ilia Popov
- Faculty of Engineering, Food Technology Department, Bina Nusantara University, Jakarta, Indonesia
| | - Sanne Verbruggen
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Venlo, The Netherlands
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Venlo, The Netherlands
| | - Pratiwi D. Kusumo
- Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Venlo, The Netherlands
| |
Collapse
|
5
|
Pérez-Losada M, Castro-Nallar E, Laerte Boechat J, Delgado L, Azenha Rama T, Berrios-Farías V, Oliveira M. The oral bacteriomes of patients with allergic rhinitis and asthma differ from that of healthy controls. Front Microbiol 2023; 14:1197135. [PMID: 37440882 PMCID: PMC10335798 DOI: 10.3389/fmicb.2023.1197135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/15/2023] [Indexed: 07/15/2023] Open
Abstract
Allergic rhinitis and asthma are two of the most common chronic respiratory diseases in developed countries and have become a major public health concern. Substantial evidence has suggested a strong link between respiratory allergy and upper airway dysbacteriosis, but the role of the oral bacteriota is still poorly understood. Here we used 16S rRNA massive parallel sequencing to characterize the oral bacteriome of 344 individuals with allergic rhinitis (AR), allergic rhinitis with asthma (ARAS), asthma (AS) and healthy controls (CT). Four of the most abundant (>2%) phyla (Actinobacteriota, Firmicutes, Fusobacteriota, and Proteobacteria) and 10 of the dominant genera (Actinomyces, Fusobacterium, Gemella, Haemophilus, Leptotrichia, Neisseria, Porphyromonas, Prevotella, Streptococcus, and Veillonella) in the oral cavity differed significantly (p ≤ 0.03) between AR, ARAS or AS and CT groups. The oral bacteriome of ARAS patients showed the highest intra-group diversity, while CT showed the lowest. All alpha-diversity indices of microbial richness and evenness varied significantly (p ≤ 0.022) in ARAS vs. CT and ARAS vs. AR, but they were not significantly different in AR vs. CT. All beta-diversity indices of microbial structure (Unifrac, Bray-Curtis, and Jaccard distances) differed significantly (p ≤ 0.049) between each respiratory disease group and controls. Bacteriomes of AR and ARAS patients showed 15 and 28 upregulated metabolic pathways (PICRUSt2) mainly related to degradation and biosynthesis (p < 0.05). A network analysis (SPIEC-EASI) of AR and ARAS bacteriomes depicted simpler webs of interactions among their members than those observed in the bacteriome of CT, suggesting chronic respiratory allergic diseases may disrupt bacterial connectivity in the oral cavity. This study, therefore, expands our understanding of the relationships between the oral bacteriome and allergy-related conditions. It demonstrates for the first time that the mouth harbors distinct bacteriotas during health and allergic rhinitis (with and without comorbid asthma) and identifies potential taxonomic and functional microbial biomarkers of chronic airway disease.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Talca, Chile
| | - José Laerte Boechat
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Luís Delgado
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João (CHUSJ), Porto, Portugal
| | - Tiago Azenha Rama
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João (CHUSJ), Porto, Portugal
| | - Valentín Berrios-Farías
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Talca, Chile
| | - Manuela Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Pérez-Losada M, Castro-Nallar E, Laerte Boechat J, Delgado L, Azenha Rama T, Berrios-Farías V, Oliveira M. Nasal Bacteriomes of Patients with Asthma and Allergic Rhinitis Show Unique Composition, Structure, Function and Interactions. Microorganisms 2023; 11:microorganisms11030683. [PMID: 36985258 PMCID: PMC10056468 DOI: 10.3390/microorganisms11030683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Allergic rhinitis and asthma are major public health concerns and economic burdens worldwide. However, little is known about nasal bacteriome dysbiosis during allergic rhinitis, alone or associated with asthma comorbidity. To address this knowledge gap we applied 16S rRNA high-throughput sequencing to 347 nasal samples from participants with asthma (AS = 12), allergic rhinitis (AR = 53), allergic rhinitis with asthma (ARAS = 183) and healthy controls (CT = 99). One to three of the most abundant phyla, and five to seven of the dominant genera differed significantly (p < 0.021) between AS, AR or ARAS and CT groups. All alpha-diversity indices of microbial richness and evenness changed significantly (p < 0.01) between AR or ARAS and CT, while all beta-diversity indices of microbial structure differed significantly (p < 0.011) between each of the respiratory disease groups and controls. Bacteriomes of rhinitic and healthy participants showed 72 differentially expressed (p < 0.05) metabolic pathways each related mainly to degradation and biosynthesis processes. A network analysis of the AR and ARAS bacteriomes depicted more complex webs of interactions among their members than among those of healthy controls. This study demonstrates that the nose harbors distinct bacteriotas during health and respiratory disease and identifies potential taxonomic and functional biomarkers for diagnostics and therapeutics in asthma and rhinitis.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Campus Talca, Universidad de Talca, Avda. Lircay s/n, Talca 3460000, Chile
- Centro de Ecología Integrativa, Campus Talca, Universidad de Talca, Avda. Lircay s/n, Talca 3460000, Chile
| | - José Laerte Boechat
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Luis Delgado
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João (CHUSJ), 4200-319 Porto, Portugal
| | - Tiago Azenha Rama
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Valentín Berrios-Farías
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Campus Talca, Universidad de Talca, Avda. Lircay s/n, Talca 3460000, Chile
- Centro de Ecología Integrativa, Campus Talca, Universidad de Talca, Avda. Lircay s/n, Talca 3460000, Chile
| | - Manuela Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Ipatimup-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
7
|
Wong MTJ, Anuar NS, Noordin R, Tye GJ. Soil-transmitted helminthic vaccines: Where are we now? Acta Trop 2023; 239:106796. [PMID: 36586174 DOI: 10.1016/j.actatropica.2022.106796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
Abstract
It has been tested and proven that vaccination is still the best strategy to combat infectious diseases. However, to date, there are still no vaccines against human soil-transmitted helminthic diseases, despite their high prevalence globally, particularly in developing countries and rural areas with tropical climates and poor sanitation. The development of vaccines against helminths is riddled with obstacles. Helminths have a complex life cycle, multiple stages within the same host with stage-specific antigen expression, and the ability to regulate host immune reactions to evade the immune response. These elements contribute to the main challenge of helminthic vaccines: the identification of effective vaccine candidates. Therefore, this article reviews the current progress and potential future direction of soil-transmitted helminthic vaccines, particularly against Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercoralis, Necator americanus and Ancylostoma duodenale. The study design employed was a systematic review, using qualitative meta-summary synthesis. Preclinical studies and clinical trials on the development of protein subunit vaccines against the five soil-transmitted helminths were searched on PubMed and Scopus. Effectiveness was indicated by a reduction in worm burden or larval output, an increase in specific IgG levels, or an increase in cytokine production. Our findings show that only the hookworm vaccine against N. americanus is in the clinical trial phase, while the rest is still in exploratory research and pre-clinical development phase.
Collapse
Affiliation(s)
- Matthew Tze Jian Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Nor Suhada Anuar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia.
| |
Collapse
|
8
|
Characteristics of Gut Microbiota in Small for Gestational Age Infants with Very Low Birth Weight. Nutrients 2022; 14:nu14235158. [PMID: 36501188 PMCID: PMC9738608 DOI: 10.3390/nu14235158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Small for gestational age (SGA) birth is associated with high rates of mortality and morbidity in preterm infants. The aim of this preliminary observational study was to investigate the difference in gut microbiota between SGA and appropriate for gestational age (AGA) preterm infants with very low birth weight (VLBW). We included 20 VLBW preterm infants (SGA, n = 10; AGA, n = 10) in this study. Stool samples were collected on days 7, 14, and 30 after birth. We performed 16S ribosomal DNA sequencing to compare microbiota composition between both groups. The SGA group exhibited a lower abundance of Klebsiella on day 14 (SGA, 0.57%; AGA, 7.42%; p = 0.037). On day 30, the SGA group exhibited a lower abundance of Klebsiella (SGA 3.76% vs. AGA 16.05%; p = 0.07) and Enterobacter (SGA 5.09% vs. AGA 27.25%; p = 0.011) than the AGA group. Beta diversity demonstrated a separation of the bacterial community structure between both groups on day 30 (p = 0.019). The present study revealed that a distinct gut microbiota profile gradually develops in SGA preterm infants with VLBW during the early days of life. The role of changes in gut microbiota structure warrants further investigation.
Collapse
|
9
|
Gut Microbiota Composition in Undernourished Children Associated with Diet and Sociodemographic Factors: A Case–Control Study in Indonesia. Microorganisms 2022; 10:microorganisms10091748. [PMID: 36144350 PMCID: PMC9502830 DOI: 10.3390/microorganisms10091748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 12/16/2022] Open
Abstract
Malnutrition, which consists of undernutrition and overnutrition, is associated with gut microbiota composition, diet, and sociodemographic factors. Undernutrition is a nutrient deficiency that that should be identified to prevent other diseases. In this study, we evaluate the gut microbiota composition in undernourished children in association with diet and sociodemographic factors. We observed normal children (n= 20) and undernourished children (n= 20) for ten days in Lombok and Yogyakarta. Diet, sociodemographic factors, and medical records were recorded using food records, screening forms, and standard household questionnaires. Gut microbiota analysis was performed using 16S rRNA gene sequencing targeting the V3–V4 region. The result showed that the undernourished group had lower energy intake. In addition, the undernourished group had lower quality of medical records, parent knowledge, education, and exclusive breastfeeding. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia were significantly different between normal and undernourished children. Based on LefSe, we determined that Akkermansia is a biomarker for undernourished children. In conclusion, diet and sociodemographic factors affect the gut microbiota composition of undernourished children.
Collapse
|
10
|
Chiang TY, Yang YR, Zhuo MY, Yang F, Zhang YF, Fu CH, Lee TJ, Chung WH, Chen L, Chang CJ. Microbiome profiling of nasal extracellular vesicles in patients with allergic rhinitis. World Allergy Organ J 2022; 15:100674. [PMID: 36017065 PMCID: PMC9386106 DOI: 10.1016/j.waojou.2022.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Tsai-Yeh Chiang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Yu-Ru Yang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Ming-Ying Zhuo
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Feng Yang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Ying-Fei Zhang
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Chia-Hsiang Fu
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Ta-Jen Lee
- Department of Otorhinolaryngology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Hung Chung
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Liang Chen
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Respiratory and Critical Care Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Allergy and Immunology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Corresponding author. Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| | - Chih-Jung Chang
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China
- Corresponding author. Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| |
Collapse
|
11
|
Taneja S, Upadhyay RP, Chowdhury R, Kurpad AV, Bhardwaj H, Kumar T, Dwarkanath P, Bose B, Devi S, Kumar G, Kaur B, Bahl R, Bhandari N. Impact of supplementation with milk-cereal mix during 6-12 months of age on growth at 12 months: a 3-arm randomized controlled trial in Delhi, India. Am J Clin Nutr 2021; 115:83-93. [PMID: 34637505 PMCID: PMC8754995 DOI: 10.1093/ajcn/nqab304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A large proportion of infants in low- and middle-income countries are stunted. These infants are often fed complementary foods that are low-quality, primarily in terms of protein and micronutrients. OBJECTIVES We aimed to test 2 milk-cereal mixes supplemented with modest and high amounts of protein during 6-12 mo of age, compared with no supplementation, for their effect on length-for-age z score (LAZ) at 12 mo of age. METHODS Eligible infants (6 mo plus ≤29 d) were randomly assigned to either of the 2 interventions (modest- and high-protein) or a no supplement group. The milk-cereal mixes provided ∼125 kcal, 30%-45% energy from fats, and 80%-100% RDA of multiple micronutrients (MMN). The modest-protein group received 2.5 g protein [protein energy ratio (PER): 8%; 0.75 g from milk source] and the high-protein group received 5.6 g protein (PER: 18%, 1.68 g from milk source). One packet was given daily for 180 d. Counseling on continued breastfeeding and optimal infant-care practices was provided to all. RESULTS We enrolled 1548 infants (high-protein: n = 512; modest-protein: n = 519; and no supplement: n = 517). Compared with the no supplement group, there was an improvement in LAZ [adjusted mean difference (MD): 0.08; 95% CI: 0.01, 0.15], weight-for-age z score (MD: 0.12; 95% CI: 0.06, 0.19), weight-for-length z score (MD: 0.11; 95% CI: 0.02, 0.19), and midupper arm circumference z score (MD: 0.10; 95% CI: 0.02, 0.18) in the high-protein group at 12 mo of age. No significant differences for these anthropometric indicators were noted between the modest-protein and no supplement groups or between the high- and modest-protein groups. CONCLUSIONS Cereal mixes with higher amounts of milk-based protein and MMN may lead to improvement in linear growth and other anthropometric indexes in infants, compared with no supplementation.This trial was registered at ctri.nic.in as CTRI/2018/04/012932.
Collapse
Affiliation(s)
- Sunita Taneja
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Ravi P Upadhyay
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Ranadip Chowdhury
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Anura V Kurpad
- Department of Physiology, St John's Medical College, Bengaluru, India
| | - Himani Bhardwaj
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Tivendra Kumar
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | | | - Beena Bose
- Department of Physiology, St John's Medical College, Bengaluru, India
| | - Sarita Devi
- Department of Physiology, St John's Medical College, Bengaluru, India
| | - Gunjan Kumar
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Baljeet Kaur
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Rajiv Bahl
- Department of Maternal, Newborn, Child and Adolescent Health, World Health Organization, Geneva, Switzerland
| | | |
Collapse
|
12
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
13
|
Zibaei M, Nosrati MRC, Shadnoosh F, Houshmand E, Karami MF, Rafsanjani MK, Majidiani H, Ghaffarifar F, Cortes HCE, Dalvand S, Badri M. Insights into hookworm prevalence in Asia: a systematic review and meta-analysis. Trans R Soc Trop Med Hyg 2021; 114:141-154. [PMID: 31917423 DOI: 10.1093/trstmh/trz115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/09/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Hookworm infections are neglected tropical diseases of humans and animals worldwide. A meta-analysis and systematic review was designed to evaluate the prevalence of hookworm infection in animal and human hosts in Asia until July 2018. METHODS The available online articles of five English databases (PubMed, Scopus, Science Direct, Web of Science and Google Scholar) were explored. RESULTS The most parasitized carnivores were jackal (48%, CI: 4 to 91%), followed by dog (41%, CI: 29 to 53%), cat (26%, CI: 14 to 38%) and the red fox (19%, CI: 13 to 24%). The weighted prevalence of Ancylostoma braziliensis, A. caninum, A. ceylanicum, A. tubaeforme and Uncinaria stenocephala isolated from different canids were found to be 27% (CI: 21 to 33%), 23% (CI: 7.0 to 53%), 24% (CI: 12 to 35%), 44% (CI: 37 to 51%) and 37% (CI: 18 to 55%), respectively. In total, 98 records were obtained for human hookworms from 3209 760 examined individuals and the calculated weighted prevalence in this population was 19% (CI: 17 to 20%). CONCLUSIONS These findings highlight a desirable ecological milieu for parasite survival and transmission in such territories, which implicates revisiting control programs and public health infrastructures in those areas.
Collapse
Affiliation(s)
- Mohammad Zibaei
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Farnosh Shadnoosh
- Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Houshmand
- Department of Parasitology, Faculty of veterinary medicine, Rasht Branch, Islamic Azad University, Guilan
| | - Maryam Fasihi Karami
- Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Hamidreza Majidiani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Sahar Dalvand
- Health Management and Economics Research Center, Iran University of Medical Sciences , Tehran, Iran
| | - Milad Badri
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Gut microbiota profile of Indonesian stunted children and children with normal nutritional status. PLoS One 2021; 16:e0245399. [PMID: 33497390 PMCID: PMC7837488 DOI: 10.1371/journal.pone.0245399] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/29/2020] [Indexed: 01/03/2023] Open
Abstract
The gut microbiota has been shown to play a role in energy metabolism of the host. Dysbiosis of the gut microbiota may predispose to obesity on the one hand, and stunting on the other. The aim of the study was to study the difference in gut microbiota composition of stunted Indonesian children and children of normal nutritional status between 3 and 5 years. Fecal samples and anthropometric measurements, in addition to economic and hygiene status were collected from 78 stunted children and 53 children with normal nutritional status in two regions in Banten and West Java provinces: Pandeglang and Sumedang, respectively. The gut microbiota composition was determined by sequencing amplicons of the V3-V4 region of the 16S rRNA gene. The composition was correlated to nutritional status and anthropometric parameters. Macronutrient intake was on average lower in stunted children, while energy-loss in the form of short-chain fatty acids (SCFA) and branched-chain fatty acids (BCFA) appeared to be higher in stunted children. In stunted children, at the phylum level the relative abundance of Bacteroidetes (44.4%) was significantly lower than in normal children (51.3%; p-value 2.55*10-4), while Firmicutes was significantly higher (45.7% vs. 39.8%; p-value 5.89*10-4). At the genus level, overall Prevotella 9 was the most abundant genus (average of 27%), and it was significantly lower in stunted children than in normal children (23.5% vs. 30.5%, respectively; q-value 0.059). Thirteen other genera were significantly different between stunted and normal children (q-value < 0.1), some of which were at low relative abundance and present in only a few children. Prevotella 9 positively correlated with height (in line with its higher relative abundance in normal children) and weight. In conclusion, Prevotella 9, which was the most abundant genus in the children, was significantly lower in stunted children. The abundance of Prevotella has been correlated with dietary fibre intake, which was lower in these stunted children. Since fibres are fermented by the gut microbiota into SCFA, and these SCFA are a source of energy for the host, increasing the proportion of Prevotella in stunted children may be of benefit. Whether this would prevent the occurrence of stunting or even has the potential to revert it, remains to be seen in follow up research.
Collapse
|
15
|
Chehab RF, Cross TWL, Forman MR. The Gut Microbiota: A Promising Target in the Relation between Complementary Feeding and Child Undernutrition. Adv Nutr 2020; 12:969-979. [PMID: 33216115 PMCID: PMC8166545 DOI: 10.1093/advances/nmaa146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023] Open
Abstract
Child undernutrition is a major public health challenge that is persistent and disproportionately prevalent in low- and middle-income countries. Undernourished children face adverse health, economic, and social consequences that can be intergenerational. The first 1000 days of life, from conception until the child's second birthday, constitute the period of greatest vulnerability to undernutrition. The transition process from milk-based diets to solid, semi-solid, and soft food and liquids other than milk, referred to as complementary feeding (CF), occurs between the age of 6 mo and 2 y. CF practices that do not meet the WHO's guiding principles and are lacking in both quality and quantity increase susceptibility to undernutrition, restrict growth, and jeopardize child development and survival. The gut microbiota develops toward an adult-like configuration within the first 2-3 y of life. Recent studies suggest that significant changes in the gut microbial composition and functional capacity occur during the CF period, but these studies were conducted in high-income countries. Research in low- and middle-income countries, on the other hand, has implicated a disrupted gut microbiota in child undernutrition, and animal experiments reveal the potential for a causal relation. Given the growing body of evidence for a plausible role of the gut microbiota in the link between CF and undernutrition, microbiota-targeted complementary food may be a promising treatment modality for undernutrition management. The aims of this paper are to review the evidence for the relation between CF and undernutrition and to highlight the potential of the gut microbiota to be a promising target in this relation. Our summary of the current state of the knowledge in this area provides a foundation for future research and helps inform the design of interventions targeting the gut microbiota to combat child undernutrition and promote healthy growth.
Collapse
Affiliation(s)
| | - Tzu-Wen L Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Michele R Forman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
16
|
Jensen EA, Young JA, Mathes SC, List EO, Carroll RK, Kuhn J, Onusko M, Kopchick JJ, Murphy ER, Berryman DE. Crosstalk between the growth hormone/insulin-like growth factor-1 axis and the gut microbiome: A new frontier for microbial endocrinology. Growth Horm IGF Res 2020; 53-54:101333. [PMID: 32717585 PMCID: PMC7938704 DOI: 10.1016/j.ghir.2020.101333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022]
Abstract
Both the GH/IGF-1 axis and the gut microbiota independently play an important role in host growth, metabolism, and intestinal homeostasis. Inversely, abnormalities in GH action and microbial dysbiosis (or a lack of diversity) in the gut have been implicated in restricted growth, metabolic disorders (such as chronic undernutrition, anorexia nervosa, obesity, and diabetes), and intestinal dysfunction (such as pediatric Crohn's disease, colonic polyps, and colon cancer). Over the last decade, studies have demonstrated that the microbial impact on growth may be mediated through the GH/IGF-1 axis, pointing toward a potential relationship between GH and the gut microbiota. This review covers current research on the GH/IGF-1 axis and the gut microbiome and its influence on overall host growth, metabolism, and intestinal health, proposing a bidirectional relationship between GH and the gut microbiome.
Collapse
Affiliation(s)
- Elizabeth A Jensen
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States of America
| | - Jonathan A Young
- Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America
| | - Samuel C Mathes
- Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America
| | - Edward O List
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America; The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America
| | - Ronan K Carroll
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America
| | - Jaycie Kuhn
- Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America
| | - Maria Onusko
- The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America; Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, United States of America
| | - John J Kopchick
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America; The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America
| | - Erin R Murphy
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America; Infectious and Tropical Diseases Institute, Irvine Hall, Ohio University, Athens, OH, United States of America
| | - Darlene E Berryman
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America; The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America.
| |
Collapse
|
17
|
Jensen EA, Young JA, Jackson Z, Busken J, List EO, Carroll RK, Kopchick JJ, Murphy ER, Berryman DE. Growth Hormone Deficiency and Excess Alter the Gut Microbiome in Adult Male Mice. Endocrinology 2020; 161:bqaa026. [PMID: 32100023 PMCID: PMC7341558 DOI: 10.1210/endocr/bqaa026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
The gut microbiome has been implicated in host metabolism, endocrinology, and pathophysiology. Furthermore, several studies have shown that gut bacteria impact host growth, partially mediated through the growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis. Yet, no study to date has examined the specific role of GH on the gut microbiome. Our study thus characterized the adult gut microbial profile and intestinal phenotype in GH gene-disrupted (GH-/-) mice (a model of GH deficiency) and bovine GH transgenic (bGH) mice (a model of chronic, excess GH action) at 6 months of age. Both the GH-/- and bGH mice had altered microbial signatures, in opposing directions at the phylum and genus levels. For example, GH-/- mice had significantly reduced abundance in the Proteobacteria, Campylobacterota, and Actinobacteria phyla, whereas bGH mice exhibited a trending increase in those phyla compared with respective controls. Analysis of maturity of the microbial community demonstrated that lack of GH results in a significantly more immature microbiome while excess GH increases microbial maturity. Several common bacterial genera were shared, although in opposing directions, between the 2 mouse lines (e.g., decreased in GH-/- mice and increased in bGH mice), suggesting an association with GH. Similarly, metabolic pathways like acetate, butyrate, heme B, and folate biosynthesis were predicted to be impacted by GH. This study is the first to characterize the gut microbiome in mouse lines with altered GH action and indicates that GH may play a role in the growth of certain microbiota thus impacting microbial maturation and metabolic function.
Collapse
Affiliation(s)
- Elizabeth A Jensen
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, Ohio
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Jonathan A Young
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
- Edison Biotechnology Institute, Konneker Research Labs, Athens, Ohio
| | - Zachary Jackson
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Joshua Busken
- College of Health Sciences and Professions, Ohio University, Athens, Ohio
| | - Edward O List
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, Ohio
- Edison Biotechnology Institute, Konneker Research Labs, Athens, Ohio
- The Diabetes Institute, Ohio University, Athens, Ohio
| | - Ronan K Carroll
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio
- Infectious and Tropical Diseases Institute, Irvine Hall, Ohio University, Athens, Ohio
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
| | - John J Kopchick
- Edison Biotechnology Institute, Konneker Research Labs, Athens, Ohio
- The Diabetes Institute, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Erin R Murphy
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, Ohio
- Infectious and Tropical Diseases Institute, Irvine Hall, Ohio University, Athens, Ohio
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Darlene E Berryman
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, Ohio
- Edison Biotechnology Institute, Konneker Research Labs, Athens, Ohio
- The Diabetes Institute, Ohio University, Athens, Ohio
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| |
Collapse
|
18
|
Abstract
The human body grows in length from conception to the maximal adult height over two decades. The shortest male population averages ∼150 cm and the tallest ∼183 cm. Nonetheless the dimensions of head and trunk are highly comparable, with the vast difference in the leg length. Stunting is a personal condition in which an individual has a standing height-for-age (HAZ) of less than two standard deviations of the standard curve median. It is associated with increased mortality, morbidity, and functional deficits. The process of losing relative stature is known as linear growth retardation, first attributed to chronic protein deficiency, then to an assortment of micronutrient deficiencies, and most recently to inflammation from unhygienic environmental conditions. Public health intervention trials responding to each of these possibilities have failed to produce true reversal responses measured in the 10s of centimeters. As to biological insights, there is no convenient way to separate weight from length growth with sonographic monitoring, but a third of infants can be born stunted. Normative growth (standard curves) competes with epigenetic adaptation (programming) as the beacon for in utero growth. Major investments into field trials allow us to discard multiple micronutrients and water/sanitation/hygiene interventions as measures to reverse established stunting. The preponderance of evidence is against catch-up growth during puberty. Future publications will be in the conceptual domain, resolving metrics, while the full range of stimuli and exposures impeding growth will be elucidated. Advances in measurement techniques in anthropometry and immunology and endocrinology will be mobilized to the literature.
Collapse
Affiliation(s)
- Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| |
Collapse
|
19
|
Moreau GB, Ramakrishnan G, Cook HL, Fox TE, Nayak U, Ma JZ, Colgate ER, Kirkpatrick BD, Haque R, Petri WA. Childhood growth and neurocognition are associated with distinct sets of metabolites. EBioMedicine 2019; 44:597-606. [PMID: 31133540 PMCID: PMC6604877 DOI: 10.1016/j.ebiom.2019.05.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/10/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Undernutrition is a serious global problem that contributes to increased child morbidity and mortality, impaired neurocognitive development, and decreased educational and economic attainment. Current interventions are only marginally effective, and identification of associated metabolic pathways can offer new strategies for intervention. METHODS Plasma samples were collected at 9 and 36 months from a subset of the PROVIDE child cohort (n = 130). Targeted metabolomics was performed on bile acids, acylcarnitines, amino acids, phosphatidylcholines, and sphingomyelins. Metabolic associations with linear growth and neurocognitive outcomes at four years were evaluated using correlation and penalized-linear regression analysis as well as conditional random forest modeling. FINDINGS Different metabolites were associated with growth and neurocognitive outcomes. Improved growth outcomes were associated with higher concentrations of hydroxy-sphingomyelin and essential amino acids and lower levels of acylcarnitines and bile acid conjugation. Neurocognitive scores were largely associated with phosphatidylcholine species and early metabolic indicators of inflammation. All metabolites identified explain ~45% of growth and neurocognitive variation. INTERPRETATION Growth outcomes were predominantly associated with metabolites measured early in life (9 months), many of which were biomarkers of insufficient diet, environmental enteric dysfunction, and microbiome disruption. Hydroxy-sphingomyelin was a significant predictor of improved growth. Neurocognitive outcome was predominantly associated with 36 month phosphatidylcholines and inflammatory metabolites, which may serve as important biomarkers of optimal neurodevelopment. The distinct sets of metabolites associated with growth and neurocognition suggest that intervention may require targeted approaches towards distinct metabolic pathways. FUND: Bill & Melinda Gates Foundation (OP1173478); National Institutes of Health (AI043596, CA044579).
Collapse
Affiliation(s)
- G Brett Moreau
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Girija Ramakrishnan
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Heather L Cook
- Department of Statistics, University of Virginia, Charlottesville, VA, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Uma Nayak
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - E Ross Colgate
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Rashidul Haque
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
20
|
Tradeoffs between immune function and childhood growth among Amazonian forager-horticulturalists. Proc Natl Acad Sci U S A 2018; 115:E3914-E3921. [PMID: 29632170 DOI: 10.1073/pnas.1717522115] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immune function is an energetically costly physiological activity that potentially diverts calories away from less immediately essential life tasks. Among developing organisms, the allocation of energy toward immune function may lead to tradeoffs with physical growth, particularly in high-pathogen, low-resource environments. The present study tests this hypothesis across diverse timeframes, branches of immunity, and conditions of energy availability among humans. Using a prospective mixed-longitudinal design, we collected anthropometric and blood immune biomarker data from 261 Amazonian forager-horticulturalist Shuar children (age 4-11 y old). This strategy provided baseline measures of participant stature, s.c. body fat, and humoral and cell-mediated immune activity as well as subsample longitudinal measures of linear growth (1 wk, 3 mo, 20 mo) and acute inflammation. Multilevel analyses demonstrate consistent negative effects of immune function on growth, with children experiencing up to 49% growth reduction during periods of mildly elevated immune activity. The direct energetic nature of these relationships is indicated by (i) the manifestation of biomarker-specific negative immune effects only when examining growth over timeframes capturing active competition for energetic resources, (ii) the exaggerated impact of particularly costly inflammation on growth, and (iii) the ability of children with greater levels of body fat (i.e., energy reserves) to completely avoid the growth-inhibiting effects of acute inflammation. These findings provide evidence for immunologically and temporally diverse body fat-dependent tradeoffs between immune function and growth during childhood. We discuss the implications of this work for understanding human developmental energetics and the biological mechanisms regulating variation in human ontogeny, life history, and health.
Collapse
|
21
|
Rosenfeld CS. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures. Front Cell Infect Microbiol 2017; 7:396. [PMID: 28936425 PMCID: PMC5596107 DOI: 10.3389/fcimb.2017.00396] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
The gut microbiome consists of over 103–104 microorganism inhabitants that together possess 150 times more genes that the human genome and thus should be considered an “organ” in of itself. Such communities of bacteria are in dynamic flux and susceptible to changes in host environment and body condition. In turn, gut microbiome disturbances can affect health status of the host. Gut dysbiosis might result in obesity, diabetes, gastrointestinal, immunological, and neurobehavioral disorders. Such host diseases can originate due to shifts in microbiota favoring more pathogenic species that produce various virulence factors, such as lipopolysaccharide. Bacterial virulence factors and metabolites may be transmitted to distal target sites, including the brain. Other potential mechanisms by which gut dysbiosis can affect the host include bacterial-produced metabolites, production of hormones and factors that mimic those produced by the host, and epimutations. All animals, including humans, are exposed daily to various environmental chemicals that can influence the gut microbiome. Exposure to such chemicals might lead to downstream systemic effects that occur secondary to gut microbiome disturbances. Increasing reports have shown that environmental chemical exposures can target both host and the resident gut microbiome. In this review, we will first consider the current knowledge of how endocrine disrupting chemicals (EDCs), heavy metals, air pollution, and nanoparticles can influence the gut microbiome. The second part of the review will consider how potential environmental chemical-induced gut microbiome changes might subsequently induce pathophysiological responses in the host, although definitive evidence for such effects is still lacking. By understanding how these chemicals result in gut dysbiosis, it may open up new remediation strategies in animals, including humans, exposed to such chemicals.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of MissouriColumbia, MO, United States.,Biomedical Sciences, University of MissouriColumbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of MissouriColumbia, MO, United States.,Genetics Area Program, University of MissouriColumbia, MO, United States
| |
Collapse
|
22
|
Hoffman DJ. Human growth and the microbiome. Ann Hum Biol 2017; 44:487-488. [PMID: 28535738 DOI: 10.1080/03014460.2017.1333631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daniel J Hoffman
- a Department of Nutritional Sciences, Program in International Nutrition, Center for Childhood Nutrition Education and Research, New Jersey Institute for Food, Nutrition, and Health , Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| |
Collapse
|