1
|
Dong B, Lei F, Lin Y, Wang X, Yuan X, Cai M, Zhao M, Zhu B. Genetic profile and ancestral polymorphism research of the Guizhou Shui and Dong ethnic groups using a novel self-developed AIM-InDel panel. Forensic Sci Int 2024; 363:112171. [PMID: 39159589 DOI: 10.1016/j.forsciint.2024.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Insertion or deletion (InDel), a genetic marker with short insertion/deletion fragment length polymorphism, is widely used in the field of forensic biological research. The Guizhou Shui (Shui) ethnic group and Guizhou Dong (Dong) ethnic group are located in the southwestern region of China, with rich historical and cultural background. In this study, a self-developed panel included 56 ancestry informative marker (AIM)-InDel loci on the autosomes, three InDel loci on the Y chromosome, and one sex-determined Amelogenin locus. Firstly, we used the 56 autosomal loci to assess the forensic individual identification and paternity testing abilities in both the Shui and Dong groups. The cumulative probability of match and probability of exclusion for the Shui and Dong groups were 2.228×10-15 and 0.991518139; 7.604×10-16 and 0.992253273, respectively. In addition, we also conducted in-depth analyses for the genetic backgrounds and structures of the Shui and Dong groups based on 56 AIM-InDel loci. This research has found that the Shui and Dong groups have close genetic relationships with the East Asian populations. Meanwhile, we also found that the Shui group has a close genetic distance with Chinese Dai in Xishuangbanna (CDX). These insights provide vital information for the genetic structures of the Shui and Dong groups, as well as basic population data and molecular biological evidence support for individual identification and biogeographic ancestry inference in forensic genetic field.
Collapse
Affiliation(s)
- Bonan Dong
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fanzhang Lei
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yifeng Lin
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xi Yuan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Meiming Cai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ming Zhao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Zhang H, Yang M, Zhang H, Ren Z, Wang Q, Liu Y, Jin X, Ji J, Feng Y, Cai C, Ran Q, Li C, Huang J. Forensic features and phylogenetic structure survey of four populations from southwest China via the autosomal insertion/deletion markers. Forensic Sci Res 2024; 9:owad052. [PMID: 38765700 PMCID: PMC11102079 DOI: 10.1093/fsr/owad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2024] Open
Abstract
Insertion/Deletion (InDel) polymorphisms, characterized by their smaller amplicons, reduced mutation rates, and compatibility with the prevalent capillary electrophoresis (CE) platforms in forensic laboratories, significantly contribute to the advancement and application of genetic analysis. Guizhou province in China serves as an important region for investigating the genetic structure, ethnic group origins, and human evolution. However, DNA data and the sampling of present-day populations are lacking, especially about the InDel markers. Here, we reported data on 47 autosomal InDels from 592 individuals from four populations in Guizhou (Han, Dong, Yi, and Chuanqing). Genotyping was performed with the AGCU InDel 50 kit to evaluate their utility for forensic purposes and to explore the population genetic structure. Our findings showed no significant deviations from Hardy-Weinberg and linkage equilibriums. The combined power of discrimination (CPD) and the combined power of exclusion (CPE) for each population demonstrated that the kit could be applied to forensic individual identification and was an effective supplement for parentage testing. Genetic structure analyses, including principal component analysis, multidimensional scaling, genetic distance calculation, STRUCTURE, and phylogenetic analysis, highlighted that the genetic proximity of the studied populations correlates with linguistic, geographical, and cultural factors. The observed genetic variances within four research populations were less pronounced than those discerned between populations across different regions. Notably, the Guizhou Han, Dong, and Chuanqing populations showed closer genetic affiliations with linguistically similar groups than the Guizhou Yi. These results underscore the potential of InDel markers in forensic science and provide insights into the genetic landscape and human evolution in multi-ethnic regions like Guizhou. Key points InDel markers show promise for forensic individual identification and parentage testing via the AGCU InDel 50 kit.Genetic analysis of Guizhou populations reveals correlations with linguistic, geographical, and cultural factors.Guizhou Han, Dong, and Chuanqing populations showed closer genetic affiliations with linguistically similar groups than the Guizhou Yi.
Collapse
Affiliation(s)
- Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Changsheng Cai
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qianchong Ran
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chengtao Li
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Jiang Huang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Srithawong S, Muisuk K, Prakhun N, Tungpairojwong N, Kutanan W. Forensic efficiency and genetic polymorphisms of 12 X-chromosomal STR loci in Northeastern Thai populations. Mol Genet Genomics 2024; 299:42. [PMID: 38568251 DOI: 10.1007/s00438-024-02134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Northeastern Thailand comprises one-third of the country and is home to various populations, with Lao Isan constituting the majority, while others are considered minority groups. Previous studies on forensic short tandem repeats (STRs) in Thailand predominantly focused on autosomal STRs but there was a paucity of X-STRs, exclusively reported from the North and Central regions of the country. In this study, we have newly established a 12 X-STRs from a total of 896 samples from Northeastern Thailand, encompassing Lao Isan as the major group in the region, alongside nine minor populations (Khmer, Mon, Nyahkur, Bru, Kuy, Phutai, Kalueang, Nyaw, and Saek). Across all ten populations, the combined powers of discrimination in both genders were high and the combined mean exclusion chance (MEC) indices calculated for deficiency, normal trio and duo cases were also high (> 0.99999). DXS10148 emerged as the most informative marker, while DXS7423 was identified as the least informative. Genetic comparison based on X-STRs frequency supported genetic distinction of cerain minor groups such as Kuy, Saek and Nyahkur from other northeastern Thai groups as well as genetic differences according to the geographic region of Thai groups (Northeast, North and Central). In sum, the overall results on population genetics are in agreement with earlier reports on other genetic systems, indicating the informativeness of X-STRs for use in anthropological genetics studies. From a forensic perspective, despite the limitations of small sample sizes for minority groups, the present results contribute to filling the gap in the reference X-STRs database of the major group Lao Isan, providing valuable frequency data for forensic applications in Thailand and neighboring countries.
Collapse
Affiliation(s)
- Suparat Srithawong
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kanha Muisuk
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nonglak Prakhun
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand.
- Department of Biology, Faculty of Science, Naresuan University, Pitsanulok, Thailand.
| |
Collapse
|
4
|
Wang X, Zhang H, Wang Q, Yang M, Liu Y, Ran Q, Huang C, Huang J, Ren Z, Jin X. Insertion/deletion polymorphism for genetic background and forensic performance exploration of the Sui group from Guizhou. Heliyon 2023; 9:e21384. [PMID: 38027767 PMCID: PMC10643464 DOI: 10.1016/j.heliyon.2023.e21384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Insertion/deletion polymorphisms (InDels) as ideal genetic markers for forensic genetics are appreciated by scholars both nationally and internationally because they integrated the favorable features of single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs). Nevertheless, with the limited identification efficiency of InDels, the multiplex amplification systems of InDels might just be applied as the supplementary methods in paternity testing with respect to commonly used STRs. In the current research, we successfully genotyped 105 unrelated individuals from the Guizhou Sui population based on a six-color fluorescence multiplex panel that could simultaneously detect 64 genetic markers (59 autosomal InDels, two autosomal miniSTRs and three Y chromosomal genetic markers). In addition, frequency distributions and forensic statistical parameters of these loci in the Sui group were assessed using the STRAF software. Phylogenetic relationships among the Sui group and other reference populations were dissected by two methods (principal component analysis and phylogenetic trees) based on 59 InDels. The combined discrimination power and probability of exclusion values of 61 autosomal genetic markers in the Sui group were nearly equal to 1-1.90063 × 10-27 and 0.999998272, respectively. Furthermore, we observed that the Sui group from Guizhou had closer genetic affinities with East Asian populations with respect to other continental populations. In summary, we stated that the multiplex amplification system might be utilized as a prospective independent tool for human individual identification and parentage testing in the Sui group residing in Guizhou.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qianchong Ran
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Chunli Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| |
Collapse
|
5
|
Ren Z, Yang M, Jin X, Wang Q, Liu Y, Zhang H, Ji J, Wang CC, Huang J. Genetic substructure of Guizhou Tai-Kadai-speaking people inferred from genome-wide single nucleotide polymorphisms data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.995783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genome-wide characteristics and admixture history of the Tai-Kadai-speaking populations are essential for understanding the population genetic diversity in southern China. We genotyped about 700,000 single nucleotide polymorphisms (SNPs) of 239 individuals from six Tai-Kadai-speaking populations residing in the mountainous Guizhou Province of southwestern China. We merged the genome-wide data with available populations and ancients in East and Southeast Asia to infer Tai-Kadai-speaking populations’ admixture history and genetic structure. We observed a genetic substructure within the studied six populations in the PCA, ADMIXTURE, ChromoPainter, GLOBETROTTER, f-statistics, and qpWave analysis. The Dong, Zhuang, and Bouyei people had a strong genetic affinity with other Tai-Kadai-speaking and Austronesian groups in the surrounding area. However, Gelao showed an affinity to Sino-Tibetan groups, and Mulao people were genetically close to Hmong-Mien populations. qpAdm further illuminated that Gelao and Dong_Tongren composited more Han-related ancestry than Dong, Zhuang, Bouyei, and Mulao people. Meanwhile, we observed high frequencies of Y-chromosome haplogroup O in studied Tai-Kadai-speaking groups except for Gelao people with a high haplogroup N frequency. From the maternal side, haplogroup M7 was frequent in studied populations except for Tongren Dong, who had a high frequency of haplogroup B5. Our newly reported data are helpful for further exploring population dynamics in southern China.
Collapse
|
6
|
Feng Y, Zhang H, Wang Q, Jin X, Le C, Liu Y, Wang X, Jiang H, Ren Z. Whole mitochondrial genome analysis of Tai-Kadai-speaking populations in Southwest China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As a single matrilineal gene, human mitochondrial DNA plays a very important role in the study of population genetics. The whole mitogenome sequences of 287 individuals of the Tai-Kadai-speaking population in Guizhou were obtained. It was discovered that there were 82, 104, and 94 haplotypes in 83 Bouyei individuals, 107 Dong individuals, and 97 Sui individuals, respectively; and the haplotype diversity in Bouyei, Dong, and Sui groups was 1.000 ± 0.02, 0.9993 ± 0.0015, and 0.999 ± 0.002, respectively. The result of neutrality tests of the Tai-Kadai-speaking population in Guizhou showed significant negative values, and the analysis of mismatch distribution showed an obvious unimodal distribution. The results implied that Guizhou Tai-Kadai-speaking populations had high genetic diversities and may have experienced recent population expansion. In addition, the primary haplogroups of studied populations were M*, F, B, D, and R*, implying that they may origin from Southern China. The matrilineal genetic structure of the Tai-Kadai-speaking populations in Guizhou was analyzed by merging the mitogenome data of 79 worldwide populations as reference data. The results showed that there were close relationships between studied populations and other Tai-Kadai as well as some Austronesian populations in East and Southeast Asia. Overall, the mitogenome data generated in this study will provide important data for the study of genetic structure of Tai-Kadai speaking populations.
Collapse
|
7
|
Forensic characteristic of 19 X-STRs in Chuanqing, Tujia and Yi groups from Guizhou province and their genetic relationships with other reference populations. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Yang M, Yang X, Ren Z, He G, Zhang H, Wang Q, Liu Y, Zhang H, Ji J, Chen J, Guo J, Huang J, Wang CC. Genetic Admixture History and Forensic Characteristics of Guizhou Sui People Inferred From Autosomal Insertion/Deletion and Genome-Wide Single-Nucleotide Polymorphisms. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insertion-deletion (Indel) serves as one of the important markers in forensic personal identification and parentage testing, especially for cases with degraded samples. However, the genetic diversity and forensic features in ethnolinguistically diverse southwestern Chinese populations remain to be explored. Sui, one Tai-Kadai-speaking population residing in Guizhou, has a complex genetic history based on linguistic, historic, and anthropological evidence. In this study, we genotyped 30 Indels from 511 Guizhou Sui individuals and obtained approximately 700,000 genome-wide single-nucleotide polymorphisms (SNPs) in 15 representative Sui individuals to comprehensively characterize the genetic diversity, forensic characteristics, and genomic landscape of Guizhou Sui people. The estimated forensic statistically allele frequency spectrum and parameters demonstrated that this Indels panel was polymorphic and informative in Tai-Kadai populations in southern China. Results of principal component analysis (PCA), STRUCTURE, and phylogenetic trees showed that Guizhou Sui had a close genetic relationship with geographically close Tai-Kadai and Hmong-Mien people. Furthermore, genomic analysis based on the Fst and f4-statistics further suggested the genetic affinity within southern Chinese Tai-Kadai-speaking populations and a close relationship with geographically adjoining Guizhou populations. Admixture models based on the ADMIXTURE, f4, three-way qpAdm, and ALDER results demonstrated the interaction between the common ancestor for Tai-Kadai/Austronesian, Hmong-Mien, and Austroasiatic speaking populations played a significant role in the formation of modern Tai-Kadai people. We observed a sex-biased influence in Sui people by finding that the dominant Y chromosomal type was a Hmong-Mien specific lineage O2a2a1a2a1a2-N5 but the mtDNA lineages were commonly found in Tai-Kadai populations. The additional southward expansion of millet farmers in the Yellow River Basin has impacted the gene pool of southern populations including Tai-Kadai. The whole-genome sequencing in the future will shed more light on the finer genetic profile of Guizhou populations.
Collapse
|
9
|
Yang Q, Qian J, Shao C, Yao Y, Zhou Z, Xu H, Tang Q, Qian X, Xie J. Identification and Characterization of Nine Novel X-Chromosomal Short Tandem Repeats on Xp21.1, Xq21.31, and Xq23 Regions. Front Genet 2021; 12:784605. [PMID: 34868274 PMCID: PMC8635773 DOI: 10.3389/fgene.2021.784605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
The application of X-chromosomal short tandem repeats (X-STRs) has been recognized as a powerful tool in complex kinship testing. To support further development of X-STR analysis in forensic use, we identified nine novel X-STRs, which could be clustered into three linkage groups on Xp21.1, Xq21.31, and Xq23. A multiplex PCR system was built based on the electrophoresis. A total of 198 unrelated Shanghai Han samples along with 168 samples from 43 families was collected to investigate the genetic polymorphism and forensic parameters of the nine loci. Allele numbers ranged from 5 to 12, and amplicon sizes ranged from 146 to 477 bp. The multiplex showed high values for the combined power of discrimination (0.99997977 in males and 0.99999999 in females) and combined mean exclusion chances (0.99997918 and 0.99997821 in trios, 0.99984939 in duos, and 0.99984200 in deficiency cases). The linkage between all pairs of loci was estimated via Kosambi mapping function and linkage disequilibrium test, and further investigated through the family study. The data from 43 families strongly demonstrated an independent transmission between LGs and a tight linkage among loci within the same LG. All these results support that the newly described X-STRs and the multiplex system are highly promising for further forensic use.
Collapse
Affiliation(s)
- Qinrui Yang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinglei Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chengchen Shao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yining Yao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhihan Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongmei Xu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiqun Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoqin Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianhui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Yang M, Jin X, Ren Z, Wang Q, Zhang H, Zhang H, Chen J, Ji J, Liu Y, Huang J. X-chromosomal STRs for genetic composition analysis of Guizhou Dong group and its phylogenetic relationships with other reference populations. Ann Hum Biol 2021; 48:621-626. [PMID: 34789047 DOI: 10.1080/03014460.2021.2008001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND X-chromosomes show a specific genetic mode, which makes genetic markers on the X chromosome play crucial roles in forensic research and human evolution. Dong group, one of 55 minority groups in China, live in Guizhou, Guangxi and Hunan provinces. Even though some genetic data of Y chromosomal short tandem repeats (STRs) and autosomal insertion/deletion polymorphism (InDels) in Dong groups have been reported, there is little research about X-STRs in the Dong group. AIM Purposes of this study are to investigate allelic distributions and forensic statistical parameters of 19 X-STRs in the Guizhou Dong group, and explore the genetic composition of the Guizhou Dong group and its phylogenetic relationships with other reference populations. SUBJECTS AND METHODS 507 Dongs (272 males and 235 females) living in Guizhou province were typed using the AGCU X19 STR kit. Allelic frequencies and forensic parameters of 19 X-STRs in the Guizhou Dong group were calculated. Population genetic analyses of Guizhou Dong and other 17 reference populations were conducted using DA genetic distances, phylogenetic tree, principal component analysis and multidimensional scaling. RESULTS A total of 230 alleles of 19 X-STRs were identified in all Dongs. The frequencies of 19 loci ranged from 0.0013 to 0.6838. Cumulative power of discrimination in males (PDM), Cumulative power of discrimination in females (PDF), four different kinds of mean exclusion chance (MEC_Kruger, MEC_Kishida, MEC_Desmarais and MEC_Desmarais_du) values of 19 X-STRs in all individuals were 0.999999999999761, 0.9999999999999999999993951, 0.999999964841617, 0.999999999997261, 0.999999999997297 and 0.999999993623172, respectively. Besides, genetic polymorphisms of seven linkage clusters ranged from 0.9381 to 0.9963. In addition, these seven groups showed high polymorphism information content (PIC), PDM, PDF, MEC_Kruger, MEC_Kishida, MEC_Desmarais and MEC_Desmarais_duo values. Population genetic analyses of Guizhou Dong and other 17 reference populations showed that the Guizhou Dong group had close genetic relationships with surrounding Tai-Kadai-speaking, Hmong-Mien-speaking and Han groups. CONCLUSION Nineteen X-STRs displayed high genetic diversities and could be employed for forensic personal identification and paternity analysis in the Guizhou Dong group. Close genetic affinities between Guizhou Dong and surrounding populations were observed based on the 19 X-STRs in 17 reference populations.
Collapse
Affiliation(s)
- Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Feng Y, Zhang H, Wang Q, Yang M, Liu Y, Wang Jie, Huang J, Ren Z. The mitochondrial DNA control region sequences from the Chinese Sui population of southwestern China. Ann Hum Biol 2021; 48:635-640. [PMID: 34663140 DOI: 10.1080/03014460.2021.1994649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Sui people are officially recognised people living in southwest China, but there has been a lack of genetic research, especially based on mitochondrial DNA data. AIM To study the sequences and haplogroups of the mitochondrial DNA control region in a typical Sui population, with the aim of helping to promote the establishment of a forensic DNA analysis reference database in East Asia. SUBJECTS AND METHODS We analysed 201 Sui individuals and observed the sequences of the mitochondrial DNA control region. We calculated and explained the haplotype frequencies, haplogroup distribution and pairwise Fst values between the Sui and 47 other populations in the world, in order to explore genetic polymorphisms and population relationships. RESULTS 161 haplotypes were found in the Sui population, with frequencies of 0.0049-0.0199. All samples were assigned to 80 different haplogroups. The haplotype diversity and random matching probability were 0.999938 and 0.024729, respectively. The pairwise Fst values and correlation p-values of 48 populations showed that the Sui population was most closely related to the Miao population in Guizhou and the Han population in Henan, and closer to the Punjab population and Pukhtunkhwa population in Pakistan, and was significantly different from the other 43 groups. Compared with the other 43 groups, it is relatively isolated. CONCLUSION Our results show that the study of mitochondrial DNA based on the analysis of matrilineal genetic structure of the Sui population can help to promote the establishment of a forensic DNA reference database in East Asia and provide reference for future anthropological research.
Collapse
Affiliation(s)
- Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wang Jie
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|
12
|
Liu L, Yuan J, Miao L, Huang R, Zhang X, Nie S, Hu L. Genetic polymorphisms of 16 X-STR loci analyzed in the Han population of Yunnan Province, Southwest China. Leg Med (Tokyo) 2021; 54:101974. [PMID: 34736140 DOI: 10.1016/j.legalmed.2021.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
To investigate the genetic diversity and forensic identification efficiency of X-chromosomal short tandem repeats (X-STRs) in the Yunnan Han population, 16 X-STRs in 415 Yunnan Han individuals (247 males and 168 females) were studied. A total of 137 alleles were detected, and all loci in the Yunnan Han population were highly polymorphic. The combined discrimination of males (PDm) and females (PDf) was 0.9999997769115 and 0.999999999999999999996, respectively. Interpopulation comparisons between the Yunnan Han population and 21 other populations showed that the evolutionary relationships between different groups with the same ethnic group or nearby geographic origins were closer. This study provides the first data on X-STR genetic polymorphisms in the Yunnan Han population and enriches the X-STR database for the Chinese Han population.
Collapse
Affiliation(s)
- Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China; Judicial Expertise Center of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Jiahui Yuan
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Lei Miao
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Renwu Huang
- Judicial Expertise Center of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Xiufeng Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China; Judicial Expertise Center of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China; Judicial Expertise Center of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China; Judicial Expertise Center of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|
13
|
Bin X, Wang R, Huang Y, Wei R, Zhu K, Yang X, Ma H, He G, Guo J, Zhao J, Yang M, Chen J, Zhang X, Tao L, Liu Y, Huang X, Wang CC. Genomic Insight Into the Population Structure and Admixture History of Tai-Kadai-Speaking Sui People in Southwest China. Front Genet 2021; 12:735084. [PMID: 34616433 PMCID: PMC8489805 DOI: 10.3389/fgene.2021.735084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Sui people, which belong to the Tai-Kadai-speaking family, remain poorly characterized due to a lack of genome-wide data. To infer the fine-scale population genetic structure and putative genetic sources of the Sui people, we genotyped 498,655 genome-wide single-nucleotide polymorphisms (SNPs) using SNP arrays in 68 Sui individuals from seven indigenous populations in Guizhou province and Guangxi Zhuang Autonomous Region in Southwest China and co-analyzed with available East Asians via a series of population genetic methods including principal component analysis (PCA), ADMIXTURE, pairwise Fst genetic distance, f-statistics, qpWave, and qpAdm. Our results revealed that Guangxi and Guizhou Sui people showed a strong genetic affinity with populations from southern China and Southeast Asia, especially Tai-Kadai- and Hmong-Mien-speaking populations as well as ancient Iron Age Taiwan Hanben, Gongguan individuals supporting the hypothesis that Sui people came from southern China originally. The indigenous Tai-Kadai-related ancestry (represented by Li), Northern East Asian-related ancestry, and Hmong-Mien-related lineage contributed to the formation processes of the Sui people. We identified the genetic substructure within Sui groups: Guizhou Sui people were relatively homogeneous and possessed similar genetic profiles with neighboring Tai-Kadai-related populations, such as Maonan. While Sui people in Yizhou and Huanjiang of Guangxi might receive unique, additional gene flow from Hmong-Mien-speaking populations and Northern East Asians, respectively, after the divergence within other Sui populations. Sui people could be modeled as the admixture of ancient Yellow River Basin farmer-related ancestry (36.2-54.7%) and ancient coastal Southeast Asian-related ancestry (45.3-63.8%). We also identified the potential positive selection signals related to the disease susceptibility in Sui people via integrated haplotype score (iHS) and number of segregating sites by length (nSL) scores. These genomic findings provided new insights into the demographic history of Tai-Kadai-speaking Sui people and their interaction with neighboring populations in Southern China.
Collapse
Affiliation(s)
- Xiaoyun Bin
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Youyi Huang
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Rongyao Wei
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Guanglin He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jianxin Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jing Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | | | - Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yilan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiufeng Huang
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Zhang X, Yuan X, Huang Y, Yao J, Zhang J, Dai J, Liu L, Nie S, Hu L. Forensic genetic polymorphisms of 16 X-STR loci in the Yunnan Miao population and their relationship to other Chinese groups. Leg Med (Tokyo) 2021; 53:101961. [PMID: 34479066 DOI: 10.1016/j.legalmed.2021.101961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 11/18/2022]
Abstract
Allele frequencies for 16 X-chromosomal STR (X-STR) loci were obtained from a sample set of 440 unrelated Yunnan Miao individuals in China. A total of 117 alleles were observed in this group, with allele frequencies ranging from 0.0016 to 0.7565. The most informative marker for the studied population was DXS10134, with a polymorphism information content (PIC) of 0.8499, and the least polymorphic locus was DXS6810 (PIC = 0.3071). The power of discrimination (PD) varied from 0.4046 (DXS6800) to 0.8642 (DXS10134) in males and from 0.6188 (DXS6800) to 0.9673 (DXS10134) in females. The combined PDM and PDF were 0.999999989975990 and 0.999999999999949, respectively. The combined MECD and MECT were 0.999983301904059 and 0.999999915883733, respectively. Furthermore, population genetic structure investigation between the Yunnan Miao and 20 other populations using principal component analysis (PCA), multidimensional scaling plot (MDS), and neighboring-joining (NJ) phylogenetic tree analyses illustrated significant genetic difference between the Yunnan Miao and the other populations. This study is the first to provide X chromosome genetic polymorphism data of the Miao population in Yunnan Province and can be used as a supplementary reference to enrich the national database.
Collapse
Affiliation(s)
- Xiufeng Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China; Judicial Expertise Center of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Xiaokun Yuan
- Honghe Public Security Bureau, Honghe, Yunnan Province, People's Republic of China
| | - Yangzhi Huang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Jinyong Yao
- Honghe Public Security Bureau, Honghe, Yunnan Province, People's Republic of China
| | - Jian Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Jiameng Dai
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China; Judicial Expertise Center of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China; Judicial Expertise Center of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China; Judicial Expertise Center of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|
15
|
Perera N, Galhena G, Ranawaka G. X-chromosomal STR based genetic polymorphisms and demographic history of Sri Lankan ethnicities and their relationship with global populations. Sci Rep 2021; 11:12748. [PMID: 34140598 PMCID: PMC8211843 DOI: 10.1038/s41598-021-92314-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
A new 16 X-short tandem repeat (STR) multiplex PCR system has recently been developed for Sr Lankans, though its applicability in evolutionary genetics and forensic investigations has not been thoroughly assessed. In this study, 838 unrelated individuals covering all four major ethnic groups (Sinhalese, Sri Lankan Tamils, Indian Tamils and Moors) in Sri Lanka were successfully genotyped using this new multiplex system. The results indicated a high forensic efficiency for the tested loci in all four ethnicities confirming its suitability for forensic applications of Sri Lankans. Allele frequency distribution of Indian Tamils showed subtle but statistically significant differences from those of Sinhalese and Moors, in contrast to frequency distributions previously reported for autosomal STR alleles. This suggest a sex biased demographic history among Sri Lankans requiring a separate X-STR allele frequency database for Indian Tamils. Substantial differences observed in the patterns of LD among the four groups demand the use of a separate haplotype frequency databases for each individual ethnicity. When analysed together with other 14 world populations, all Sri Lankan ethnicities except Indian Tamils clustered closely with populations from Indian Bhil tribe, Bangladesh and Europe reflecting their shared Indo-Aryan ancestry.
Collapse
Affiliation(s)
- Nandika Perera
- Genetech Molecular Diagnostics, Colombo 08, Sri Lanka
- Faculty of Health Sciences, The Open University of Sri Lanka, Nawala, Sri Lanka
| | - Gayani Galhena
- Department of Zoology and Environment Sciences, University of Colombo, Colombo 03, Sri Lanka.
| | - Gaya Ranawaka
- Faculty of Health Sciences, The Open University of Sri Lanka, Nawala, Sri Lanka
| |
Collapse
|
16
|
Liu L, Yao J, Huang Y, Gao L, Dai J, Yuan X, Zhang X, Nie S, Hu L. Genetic polymorphisms of 16 X-STR loci in the Hani population from Southwest China. Forensic Sci Res 2021; 7:196-201. [PMID: 35784423 PMCID: PMC9246014 DOI: 10.1080/20961790.2021.1877389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
- Judicial Expertise Center, Kunming Medical University, Kunming, China
| | - Jinyong Yao
- Honghe Public Security Bureau, Honghe, China
| | | | - Lei Gao
- Honghe Public Security Bureau, Honghe, China
| | - Jiameng Dai
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | | | - Xiufeng Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
- Judicial Expertise Center, Kunming Medical University, Kunming, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, China
- Judicial Expertise Center, Kunming Medical University, Kunming, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
- Judicial Expertise Center, Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
Luo L, Gao H, Yao L, Long F, Zhang H, Zhang L, Liu Y, Yu J, Yu L, Chen P. Genetic diversity, forensic feature, and phylogenetic analysis of Guizhou Tujia population via 19 X-STRs. Mol Genet Genomic Med 2020; 8:e1473. [PMID: 32881358 PMCID: PMC7667307 DOI: 10.1002/mgg3.1473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND X-chromosome short tandem repeats (X-STRs) with unique sex-linkage inheritance models play a complementary role in forensic science. Guizhou is a multiethnic province located in southwest China and some genetic evidence focusing on X-STRs for various minorities was reported. However, population data of Guizhou Tujia are scarce. METHODS A total of 507 Guizhou Tujia individuals were profiled using the AGCU X-19 STR kit. Allele frequencies and forensic parameters were calculated. Additionally, population genetic relationships between Guizhou Tujia and other 19 populations were explored. RESULTS A total of 257 alleles with the allele frequencies ranged from 0.0013 to 0.6098 were found. The combined power of discrimination in males and females and mean exclusion chances in all case scenarios were all greater than 0.99999. Population comparisons showed Guizhou Tujia had a homogeneity with all Han populations from different administrative regions, and other ethnic populations residing in Guizhou, while had obviously genetic heterogeneity with the Altaic family populations except Xibe. CONCLUSION Nineteen X-STRs can afford a reliable and informative database of Guizhou Tujia population for human identification and paternity testing, especially in complex biological relations. The genetic relationships of Chinese are significantly influenced by the geographic position and ethnolinguistic origin.
Collapse
Affiliation(s)
- Li Luo
- Key Laboratory of Cell Engineering in Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Shanghai Key Laboratory of Forensic MedicineShanghai Forensic Service PlatformAcademy of Forensic ScienceShanghaiChina
| | - Hongyan Gao
- Key Laboratory of Cell Engineering in Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lilan Yao
- Key Laboratory of Cell Engineering in Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Fei Long
- Department of Forensic Biology EvidenceZunyi City Public Security BureauZunyiGuizhouChina
| | - Hao Zhang
- Key Laboratory of Cell Engineering in Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lushun Zhang
- Department of Pathology and PathophysiologyChengdu Medical CollegeChengduChina
| | - Yong Liu
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jian Yu
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Pengyu Chen
- Key Laboratory of Cell Engineering in Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
18
|
Lu J, Zhang H, Ren Z, Wang Q, Liu Y, Li Y, He G, Guo J, Zhao J, Hu R, Wei LH, Chen G, Huang J, Wang CC. Genome-wide analysis of unrecognised ethnic group Chuanqing people revealing a close affinity with Southern Han Chinese. Ann Hum Biol 2020; 47:465-471. [PMID: 32543893 DOI: 10.1080/03014460.2020.1782470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Chuanqing is an unrecognised ethnic group in Guizhou, southwest China. The genetic history of the Chuanqing people is hotly debated due to a lack of available genetic data. AIM To infer the genetic structure and population history of the Chuanqing people and genetic relationships of the Chuanqing with other East Asians. SUBJECTS AND METHODS We collected samples from 14 Chuanqing individuals from Guizhou and genotyped about 690,000 genome-wide single nucleotide polymorphisms (SNPs). We used Principal Component Analysis (PCA), ADMIXTURE analysis, and f statistics to infer the population genetic structure and admixture. RESULTS Chuanqing people show a distinct genetic profile from indigenous Tai-Kadai and Tibeto-Burman speaking populations in southwest China, but they are genetically similar to southern Han Chinese, Miao, She and Tujia populations. The Han Chinese characteristic Y chromosomal lineages reach high frequencies in the Chuanqing. CONCLUSIONS The genetic formation of the Chuanqing people has been greatly influenced by Han Chinese related populations.
Collapse
Affiliation(s)
- Jiani Lu
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, and National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guizhou, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guizhou, China
| | - Yingxiang Li
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, and National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guanglin He
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, and National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, and National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jing Zhao
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, and National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rong Hu
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, and National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, and National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| | | | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guizhou, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, and National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|