1
|
Wei X, Zhang M, Min R, Jiang Z, Xue J, Zhu Z, Yuan H, Li X, Zhao D, Cao P, Liu F, Dai Q, Feng X, Yang R, Wu X, Hu C, Ma M, Liu X, Wan Y, Yang F, Zhou R, Kang L, Dong G, Ping W, Wang T, Miao B, Bai F, Zheng Y, Liu Y, Yang MA, Wang W, Bennett EA, Fu Q. Neolithic to Bronze Age human maternal genetic history in Yunnan, China. J Genet Genomics 2024:S1673-8527(24)00251-0. [PMID: 39343094 DOI: 10.1016/j.jgg.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Yunnan in southwest China is a geographically and ethnically complex region at the intersection of southern China and Southeast Asia, and a focal point for human migrations. To clarify its maternal genetic history, we generated 152 complete mitogenomes from 17 Yunnan archaeological sites. Our results reveal distinct genetic histories segregated by geographical regions. Maternal lineages of ancient populations from northwestern and northern Yunnan exhibit closer affinities with past and present-day populations from northern East Asia and Xizang, providing important genetic evidence for the migration and interaction of populations along the Tibetan-Yi corridor since the Neolithic. Between 5500 and 1800 years ago, central Yunnan populations maintained their internal genetic relationships, including a 7000-year-old basal lineage of the rare and widely dispersed haplogroup M61. At the Xingyi site, changes in mitochondrial DNA haplogroups occurred between the Late Neolithic and Bronze Age, with haplogroups shifting from those predominant in the Yellow River region to those predominant in coastal southern China. These results highlight the high diversity of Yunnan populations during the Neolithic to Bronze Age.
Collapse
Affiliation(s)
- Xinyu Wei
- China-Central Asia "the Belt and Road" Joint Laboratory on Human and Environment Research, Key Laboratory of Cultural Heritage Research and Conservation, School of Cultural Heritage, Northwest University, Xi'an, Shaanxi 710127, China; Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- China-Central Asia "the Belt and Road" Joint Laboratory on Human and Environment Research, Key Laboratory of Cultural Heritage Research and Conservation, School of Cultural Heritage, Northwest University, Xi'an, Shaanxi 710127, China; Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Rui Min
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Zhilong Jiang
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Jiayang Xue
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghua Zhu
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Haibing Yuan
- Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaorui Li
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Dongyue Zhao
- China-Central Asia "the Belt and Road" Joint Laboratory on Human and Environment Research, Key Laboratory of Cultural Heritage Research and Conservation, School of Cultural Heritage, Northwest University, Xi'an, Shaanxi 710127, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Changcheng Hu
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Minmin Ma
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xu Liu
- Yunnan Museum, Kunming, Yunnan 650206, China
| | - Yang Wan
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Fan Yang
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Ranchao Zhou
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Lihong Kang
- Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Miao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Zheng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yuxiao Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Sino-Danish Center, University of the Chinese Academy of Sciences, Beijing 100049, China; College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Melinda A Yang
- Department of Biology, University of Richmond, Richmond, VA 23173, USA.
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Science and Technology Archaeology, National Centre for Archaeology, Beijing 100013, China.
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Ren Z, Yang M, Jin X, Wang Q, Liu Y, Zhang H, Ji J, Wang CC, Huang J. Genetic substructure of Guizhou Tai-Kadai-speaking people inferred from genome-wide single nucleotide polymorphisms data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.995783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genome-wide characteristics and admixture history of the Tai-Kadai-speaking populations are essential for understanding the population genetic diversity in southern China. We genotyped about 700,000 single nucleotide polymorphisms (SNPs) of 239 individuals from six Tai-Kadai-speaking populations residing in the mountainous Guizhou Province of southwestern China. We merged the genome-wide data with available populations and ancients in East and Southeast Asia to infer Tai-Kadai-speaking populations’ admixture history and genetic structure. We observed a genetic substructure within the studied six populations in the PCA, ADMIXTURE, ChromoPainter, GLOBETROTTER, f-statistics, and qpWave analysis. The Dong, Zhuang, and Bouyei people had a strong genetic affinity with other Tai-Kadai-speaking and Austronesian groups in the surrounding area. However, Gelao showed an affinity to Sino-Tibetan groups, and Mulao people were genetically close to Hmong-Mien populations. qpAdm further illuminated that Gelao and Dong_Tongren composited more Han-related ancestry than Dong, Zhuang, Bouyei, and Mulao people. Meanwhile, we observed high frequencies of Y-chromosome haplogroup O in studied Tai-Kadai-speaking groups except for Gelao people with a high haplogroup N frequency. From the maternal side, haplogroup M7 was frequent in studied populations except for Tongren Dong, who had a high frequency of haplogroup B5. Our newly reported data are helpful for further exploring population dynamics in southern China.
Collapse
|
3
|
Yang Z, Chen H, Lu Y, Gao Y, Sun H, Wang J, Jin L, Chu J, Xu S. Genetic evidence of tri-genealogy hypothesis on the origin of ethnic minorities in Yunnan. BMC Biol 2022; 20:166. [PMID: 35864541 PMCID: PMC9306206 DOI: 10.1186/s12915-022-01367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Yunnan is located in Southwest China and consists of great cultural, linguistic, and genetic diversity. However, the genomic diversity of ethnic minorities in Yunnan is largely under-investigated. To gain insights into population history and local adaptation of Yunnan minorities, we analyzed 242 whole-exome sequencing data with high coverage (~ 100-150 ×) of Yunnan minorities representing Achang, Jingpo, Dai, and Deang, who were linguistically assumed to be derived from three ancient lineages (the tri-genealogy hypothesis), i.e., Di-Qiang, Bai-Yue, and Bai-Pu. RESULTS Yunnan minorities show considerable genetic differences. Di-Qiang populations likely migrated from the Tibetan area about 6700 years ago. Genetic divergence between Bai-Yue and Di-Qiang was estimated to be 7000 years, and that between Bai-Yue and Bai-Pu was estimated to be 5500 years. Bai-Pu is relatively isolated, but gene flow from surrounding Di-Qiang and Bai-Yue populations was also found. Furthermore, we identified genetic variants that are differentiated within Yunnan minorities possibly due to the living circumstances and habits. Notably, we found that adaptive variants related to malaria and glucose metabolism suggest the adaptation to thalassemia and G6PD deficiency resulting from malaria resistance in the Dai population. CONCLUSIONS We provided genetic evidence of the tri-genealogy hypothesis as well as new insights into the genetic history and local adaptation of the Yunnan minorities.
Collapse
Affiliation(s)
- Zhaoqing Yang
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yang Gao
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Hao Sun
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Jiayou Chu
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China.
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China.
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
4
|
Yang M, He G, Ren Z, Wang Q, Liu Y, Zhang H, Zhang H, Chen J, Ji J, Zhao J, Guo J, Zhu K, Yang X, Wang R, Ma H, Wang CC, Huang J. Genomic Insights Into the Unique Demographic History and Genetic Structure of Five Hmong-Mien-Speaking Miao and Yao Populations in Southwest China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.849195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Southern China was the original center of multiple ancestral populations related to modern Hmong-Mien, Tai-Kadai, Austroasiatic, and Austronesian people. More recent genetic surveys have focused on the fine-scale genetic structure and admixture history of southern Chinese populations, but the genetic formation and diversification of Hmong-Mien speakers are far from clear due to the sparse genetic sampling. Here, we reported nearly 700,000 single-nucleotide polymorphisms (SNPs) data from 130 Guizhou Miao and Yao individuals. We used principal component analysis, ADMIXTURE, f-statistics, qpAdm, phylogenetic tree, fineSTRUCTURE, and ALDER to explore the fine-scale population genetic structure and admixture pattern of Hmong-Mien people. The sharing allele patterns showed that our studied populations had a strong genetic affinity with ancient and modern groups from southern and southeastern East Asia. We identified one unique ancestry component maximized in Yao people, which widely existed in other Hmong-Mien-speaking populations in southern China and Southeast Asia and ancient samples of Guangxi. Guizhou Hmong-Mien speakers harbored the dominant proportions of ancestry related to southern indigenous East Asians and minor proportions of northern ancestry related to Yellow River farmers, suggesting the possibility of genetic admixture between Hmong-Mien people and recent southward Sino-Tibetan-related populations. Furthermore, we found a genetic substructure among geographically different Miao and Yao people in Leishan and Songtao. The Yao and Miao people in Leishan harbored more southern East Asian ancestry, but Miao in Songtao received more northern East Asian genetic influence. We observed high mtDNA but low Y-chromosome diversity in studied Hmong-Mien groups, supporting the role of sex-specific residence in influencing human genetic variation. Our data provide valuable clues for further exploring population dynamics in southern China.
Collapse
|
5
|
Yang M, Yang X, Ren Z, He G, Zhang H, Wang Q, Liu Y, Zhang H, Ji J, Chen J, Guo J, Huang J, Wang CC. Genetic Admixture History and Forensic Characteristics of Guizhou Sui People Inferred From Autosomal Insertion/Deletion and Genome-Wide Single-Nucleotide Polymorphisms. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insertion-deletion (Indel) serves as one of the important markers in forensic personal identification and parentage testing, especially for cases with degraded samples. However, the genetic diversity and forensic features in ethnolinguistically diverse southwestern Chinese populations remain to be explored. Sui, one Tai-Kadai-speaking population residing in Guizhou, has a complex genetic history based on linguistic, historic, and anthropological evidence. In this study, we genotyped 30 Indels from 511 Guizhou Sui individuals and obtained approximately 700,000 genome-wide single-nucleotide polymorphisms (SNPs) in 15 representative Sui individuals to comprehensively characterize the genetic diversity, forensic characteristics, and genomic landscape of Guizhou Sui people. The estimated forensic statistically allele frequency spectrum and parameters demonstrated that this Indels panel was polymorphic and informative in Tai-Kadai populations in southern China. Results of principal component analysis (PCA), STRUCTURE, and phylogenetic trees showed that Guizhou Sui had a close genetic relationship with geographically close Tai-Kadai and Hmong-Mien people. Furthermore, genomic analysis based on the Fst and f4-statistics further suggested the genetic affinity within southern Chinese Tai-Kadai-speaking populations and a close relationship with geographically adjoining Guizhou populations. Admixture models based on the ADMIXTURE, f4, three-way qpAdm, and ALDER results demonstrated the interaction between the common ancestor for Tai-Kadai/Austronesian, Hmong-Mien, and Austroasiatic speaking populations played a significant role in the formation of modern Tai-Kadai people. We observed a sex-biased influence in Sui people by finding that the dominant Y chromosomal type was a Hmong-Mien specific lineage O2a2a1a2a1a2-N5 but the mtDNA lineages were commonly found in Tai-Kadai populations. The additional southward expansion of millet farmers in the Yellow River Basin has impacted the gene pool of southern populations including Tai-Kadai. The whole-genome sequencing in the future will shed more light on the finer genetic profile of Guizhou populations.
Collapse
|
6
|
Yu X, Li H. Origin of ethnic groups, linguistic families, and civilizations in China viewed from the Y chromosome. Mol Genet Genomics 2021; 296:783-797. [PMID: 34037863 DOI: 10.1007/s00438-021-01794-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
East Asia, geographically extending to the Pamir Plateau in the west, to the Himalayan Mountains in the southwest, to Lake Baikal in the north and to the South China Sea in the south, harbors a variety of people, cultures, and languages. To reconstruct the natural history of East Asians is a mission of multiple disciplines, including genetics, archaeology, linguistics, and ethnology. Geneticists confirm the recent African origin of modern East Asians. Anatomically modern humans arose in Africa and immigrated into East Asia via a southern route approximately 50,000 years ago. Following the end of the Last Glacial Maximum approximately 12,000 years ago, rice and millet were domesticated in the south and north of East Asia, respectively, which allowed human populations to expand and linguistic families and ethnic groups to develop. These Neolithic populations produced a strong relation between the present genetic structures and linguistic families. The expansion of the Hongshan people from northeastern China relocated most of the ethnic populations on a large scale approximately 5300 years ago. Most of the ethnic groups migrated to remote regions, producing genetic structure differences between the edge and center of East Asia. In central China, pronounced population admixture occurred and accelerated over time, which subsequently formed the Han Chinese population and eventually the Chinese civilization. Population migration between the north and the south throughout history has left a smooth gradient in north-south changes in genetic structure. Observation of the process of shaping the genetic structure of East Asians may help in understanding the global natural history of modern humans.
Collapse
Affiliation(s)
- Xueer Yu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanxi Academy of Advanced Research and Innovation, Fudan-Datong Institute of Chinese Origin, Datong, 037006, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Shanxi Academy of Advanced Research and Innovation, Fudan-Datong Institute of Chinese Origin, Datong, 037006, China.
| |
Collapse
|
7
|
Guo J, Xu B, Li L, He G, Zhang H, Cheng HZ, Ba J, Yang X, Wei L, Hu R, Wang CC. Paternal Y chromosomal genotyping reveals multiple large-scale admixtures in the formation of Lolo-Burmese-speaking populations in southwest China. Ann Hum Biol 2019; 46:581-588. [PMID: 31825250 DOI: 10.1080/03014460.2019.1698655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Bai and Yi people are two Tibeto-Burman speaking ethnic groups in Yunnan, southwest China. The genetic structure and history of these two groups are largely unknown due to a lack of available genetic data.Aim: To investigate the paternal genetic structure and population relationship of the Yi and Bai people.Subjects and methods: We collected samples from 278 Bai individuals and 283 Yi individuals from Yunnan and subsequently genotyped 43 phylogenetically relevant Y-SNPs in those samples. We estimated haplogroup frequencies and merged our data with a reference database including 46 representative worldwide populations to infer genetic relationships.Results: Y chromosomal haplogroup O-M175 is the dominant lineage in both Bai and Yi people. The Bai and Yi show a close genetic relationship with other Tibeto-Burman-speaking populations with high frequencies of haplogroup O2a2b1a1-Page23, which is also confirmed by PCA. The frequencies of the Tai-Kadai specific lineage O1a-M119, the southern China widespread lineage O1b-P31 and the eastern China enriched lineage O2a1b-002611, are also relatively high in our studied populations.Conclusions: The paternal Y chromosomal affinity of the Bai and Yi with Tibeto-Burman groups is consistent with the language classification. During the formation of the Bai and Yi populations, there were multiple large-scale admixtures, including the expansion of Neolithic farming populations from northern China, the assimilation of Tai-Kadai-speaking populations in southwest China, the demographic expansion driven by Neolithic agricultural revolution from southern China, and the admixture with populations of military immigration from northern and eastern China.
Collapse
Affiliation(s)
- Jianxin Guo
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Bingying Xu
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Lanjiang Li
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Guanglin He
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hui-Zhen Cheng
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jinxing Ba
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Lanhai Wei
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Rong Hu
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Chuan-Chao Wang
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|