1
|
Innes JG, Norbury G, Samaniego A, Walker S, Wilson DJ. Rodent management in Aotearoa New Zealand: approaches and challenges to landscape-scale control. Integr Zool 2024; 19:8-26. [PMID: 36920845 DOI: 10.1111/1749-4877.12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Aotearoa-New Zealand has only four rodent species, all introduced. In order of arrival, they are Pacific rat Rattus exulans, brown rat R. norvegicus, house mouse Mus musculus, and black rat R. rattus. Rodent management in New Zealand aims mainly to conserve indigenous biodiversity rather than to protect crops or manage diseases, as is usual elsewhere. We describe four major "regimes" and one major vision for rodent control in New Zealand to meet ecological restoration objectives. Current challenges for island eradications are for large islands that are remote or populated by people. Aerial 1080 is the only large-scale (tens of thousands of hectares) option for black rat control, but its application requires adjustment to counter subsequent rapid black rat repopulation. Unfenced "ecosanctuaries" (mean 720 ha) use ground-based traps and poisons to target mainly black rats and face constant reinvasion. Ecosanctuaries with mammal-resistant fences (up to 3500 ha) limit reinvasion and target more pest species and have enabled the return of previously extirpated taxa to the main islands. Predator Free 2050 aims to eradicate the rat species (but not mice) plus some other introduced mammals from New Zealand by 2050. This vision is not attainable with current tools, but research and experimental management is exploring techniques and technologies. The large scale (to 100 000 ha) at which black rats are now targeted for control to extremely low abundance seems to be unique to New Zealand.
Collapse
Affiliation(s)
- John G Innes
- Manaaki Whenua-Landcare Research, Hamilton, New Zealand
| | - Grant Norbury
- Manaaki Whenua-Landcare Research, Alexandra, New Zealand
| | | | - Susan Walker
- Manaaki Whenua-Landcare Research, Dunedin, New Zealand
| | | |
Collapse
|
2
|
Bodey TW, Carter ZT, Haubrock PJ, Cuthbert RN, Welsh MJ, Diagne C, Courchamp F. Building a synthesis of economic costs of biological invasions in New Zealand. PeerJ 2022; 10:e13580. [PMID: 35990909 PMCID: PMC9387519 DOI: 10.7717/peerj.13580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 01/17/2023] Open
Abstract
Biological invasions are a major component of anthropogenic environmental change, incurring substantial economic costs across all sectors of society and ecosystems. There have been recent syntheses of costs for a number of countries using the newly compiled InvaCost database, but New Zealand-a country renowned for its approach to invasive species management-has so far not been examined. Here we analyse reported economic damage and management costs incurred by biological invasions in New Zealand from 1968 to 2020. In total, US$69 billion (NZ$97 billion) is currently reported over this ∼50-year period, with approximately US$9 billion of this considered highly reliable, observed (c.f. projected) costs. Most (82%) of these observed economic costs are associated with damage, with comparatively little invested in management (18%). Reported costs are increasing over time, with damage averaging US$120 million per year and exceeding management expenditure in all decades. Where specified, most reported costs are from terrestrial plants and animals, with damages principally borne by primary industries such as agriculture and forestry. Management costs are more often associated with interventions by authorities and stakeholders. Relative to other countries present in the InvaCost database, New Zealand was found to spend considerably more than expected from its Gross Domestic Product on pre- and post-invasion management costs. However, some known ecologically (c.f. economically) impactful invasive species are notably absent from estimated damage costs, and management costs are not reported for a number of game animals and agricultural pathogens. Given these gaps for known and potentially damaging invaders, we urge improved cost reporting at the national scale, including improving public accessibility through increased access and digitisation of records, particularly in overlooked socioeconomic sectors and habitats. This also further highlights the importance of investment in management to curtail future damages across all sectors.
Collapse
Affiliation(s)
- Thomas W. Bodey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand,School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Zachary T. Carter
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Phillip J. Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany,Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic
| | - Ross N. Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany,School of Biological Sciences, The Queen’s University Belfast, Belfast, United Kingdom
| | | | - Christophe Diagne
- CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Franck Courchamp
- CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| |
Collapse
|
3
|
Abstract
Initiatives such as education, incentives, and regulations are used to change people’s behaviour and thereby achieve policy objectives. Understanding and predicting the willingness of people to change their behaviour in response to an initiative is critical in assessing its likely effectiveness. We present a framework proposed by Kaine et al. (2010) for understanding and predicting the motivation of people to change their behaviour in response to a policy initiative. The framework draws on the marketing concept of ‘involvement’, a measure of motivation. Through application to a predator control case study, we show how the framework may be used to predict people’s responses to a policy initiative and how these predictions might help agencies develop strategies to promote behaviour change.
Collapse
|
4
|
Peltzer DA, Bellingham PJ, Dickie IA, Houliston G, Hulme PE, Lyver PO, McGlone M, Richardson SJ, Wood J. Scale and complexity implications of making New Zealand predator-free by 2050. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1653940] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | - Ian A. Dickie
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Philip E. Hulme
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | | | | | | | | |
Collapse
|