1
|
Luqman M, Duhan N, Temeeyasen G, Selim M, Jangra S, Mor SK. Geographical Expansion of Avian Metapneumovirus Subtype B: First Detection and Molecular Characterization of Avian Metapneumovirus Subtype B in US Poultry. Viruses 2024; 16:508. [PMID: 38675851 PMCID: PMC11054003 DOI: 10.3390/v16040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Avian metapneumovirus (aMPV), classified within the Pneumoviridae family, wreaks havoc on poultry health. It typically causes upper respiratory tract and reproductive tract infections, mainly in turkeys, chickens, and ducks. Four subtypes of AMPV (A, B, C, D) and two unclassified subtypes have been identified, of which subtypes A and B are widely distributed across the world. In January 2024, an outbreak of severe respiratory disease occurred on turkey and chicken farms across different states in the US. Metagenomics sequencing of selected tissue and swab samples confirmed the presence of aMPV subtype B. Subsequently, all samples were screened using an aMPV subtype A and B multiplex real-time RT-PCR kit. Of the 221 farms, 124 (56%) were found to be positive for aMPV-B. All samples were negative for subtype A. Six whole genomes were assembled, five from turkeys and one from chickens; all six assembled genomes showed 99.29 to 99.98% nucleotide identity, indicating a clonal expansion event for aMPV-B within the country. In addition, all six sequences showed 97.74 to 98.58% nucleotide identity with previously reported subtype B sequences, e.g., VCO3/60616, Hungary/657/4, and BR/1890/E1/19. In comparison to these two reference strains, the study sequences showed unique 49-62 amino acid changes across the genome, with maximum changes in glycoprotein (G). One unique AA change from T (Threonine) to I (Isoleucine) at position 153 in G protein was reported only in the chicken aMPV sequence, which differentiated it from turkey sequences. The twelve unique AA changes along with change in polarity of the G protein may indicate that these unique changes played a role in the adaptation of this virus in the US poultry. This is the first documented report of aMPV subtype B in US poultry, highlighting the need for further investigations into its genotypic characterization, pathogenesis, and evolutionary dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunil Kumar Mor
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, College of Agriculture, Food & Environmental Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.L.); (N.D.); (G.T.); (M.S.); (S.J.)
| |
Collapse
|
2
|
Hong SM, Ha EJ, Kim HW, Kim SJ, Ahn SM, An SH, Kim G, Kim S, Kwon HJ, Choi KS. Effects of G and SH Truncation on the Replication, Virulence, and Immunogenicity of Avian Metapneumovirus. Vaccines (Basel) 2024; 12:106. [PMID: 38276678 PMCID: PMC10818707 DOI: 10.3390/vaccines12010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Four mutants varying the length of the G and SH genes, including a G-truncated mutant (ΔG) and three G/SH-truncated mutants (ΔSH/G-1, ΔSH/G-2, and ΔSH/G-3), were generated via serially passaging the avian metapneumovirus strain SNU21004 into the cell lines Vero E6 and DF-1 and into embryonated chicken eggs. The mutant ΔG particles resembled parental virus particles except for the variance in the density of their surface projections. G and G/SH truncation significantly affected the viral replication in chickens' tracheal ring culture and in infected chickens but not in the Vero E6 cells. In experimentally infected chickens, mutant ΔG resulted in the restriction of viral replication and the attenuation of the virulence. The mutants ΔG and ΔSH/G-1 upregulated three interleukins (IL-6, IL-12, and IL-18) and three interferons (IFNα, IFNβ, and IFNγ) in infected chickens. In addition, the expression levels of innate immunity-related genes such as Mda5, Rig-I, and Lgp2, in BALB/c mice were also upregulated when compared to the parental virus. Immunologically, the mutant ΔG induced a strong, delayed humoral immune response, while the mutant ΔSH/G-1 induced no humoral immune response. Our findings indicate the potential of the mutant ΔG but not the mutant ΔSH/G-1 as a live attenuated vaccine candidate.
Collapse
Affiliation(s)
- Seung-Min Hong
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Eun-Jin Ha
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Ho-Won Kim
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Seung-Ji Kim
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Sun-Min Ahn
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Se-Hee An
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea;
| | - Gun Kim
- Laboratory of Veterinary Pharmacology, Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 088026, Republic of Korea;
| | - Suji Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - Hyuk-Joon Kwon
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea
- Institutes of Green-bio Science Technology (GBST), Farm Animal Clinical Training and Research Center (FACTRC), Seoul National University, Pyeongchang 25354, Republic of Korea
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| |
Collapse
|
3
|
A. Abd El-Ghany W. Avian Metapneumovirus Infection in Poultry Flocks: A Review of Current Knowledge. PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE 2023; 46:971-1002. [DOI: 10.47836/pjtas.46.3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Avian metapneumovirus (aMPV) is one of the respiratory viruses that cause global economic losses in poultry production systems. Therefore, it was important to design a comprehensive review article that gives more information about aMPV infection regarding the distribution, susceptibility, transmission, pathogenesis, pathology, diagnosis, and prevention. The aMPV infection is characterized by respiratory and reproductive disorders in turkeys and chickens. The disease condition is turkey rhinotracheitis in turkeys and swollen head syndrome in chickens. Infection with aMPV is associated with worldwide economic losses, especially in complications with other infections or poor environmental conditions. The genus Metapneumovirus is a single-stranded enveloped RNA virus and contains A, B, C, and D subtypes. Meat and egg-type birds are susceptible to aMPV infection. The virus can transmit through aerosol, direct contact, mechanical, and vertical routes. The disease condition is characterized by respiratory manifestations, a decrease in egg production, growth retardation, increasing morbidity rate, and sometimes nervous signs and a high mortality rate, particularly in concurrent infections. Definitive diagnosis of aMPV is based mainly on isolation and identification methods, detection of the viral DNA, as well as seroconversion. Prevention of aMPV infection depends on adopting biosecurity measures and vaccination using inactivated, live attenuated, and recombinant or DNA vaccines.
Collapse
|
4
|
Tucciarone CM, Franzo G, Legnardi M, Pasotto D, Lupini C, Catelli E, Quaglia G, Graziosi G, Dal Molin E, Gobbo F, Cecchinato M. Molecular Survey on A, B, C and New Avian Metapneumovirus (aMPV) Subtypes in Wild Birds of Northern-Central Italy. Vet Sci 2022; 9:vetsci9070373. [PMID: 35878390 PMCID: PMC9319881 DOI: 10.3390/vetsci9070373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Avian metapneumovirus (aMPV) is a common pathogen in poultry and has been detected in wild birds, suggesting the possible role in viral dissemination. A feature of aMPV is its genetic and antigenic variability, which has allowed the identification of various subtypes of the virus with different characteristics in terms of host tropism. Two new subtypes of aMPV were recently identified in gulls and parakeets. We aimed to explore the epidemiology of old and new aMPV subtypes in wild birds. Samples were collected in Italy during the surveillance of avian influenza in wild species and were tested with two multiplex real time RT-PCRs that were able to detect and distinguish the aMPV subtypes (A, B, C, gull, and parakeet subtypes). All of the individuals were negative, except for one mallard that was positive for aMPV subtype C. The M and G genes of this strain were molecularly characterized and revealed similarities with Chinese and European strains, including an Italian sequence that was previously detected in a widgeon. These findings confirm the susceptibility of mallards, which are closely related to domestic species, highlighting the importance of the epidemiological monitoring of aMPV circulation. Abstract Recent insights into the genetic and antigenic variability of avian metapneumovirus (aMPV), including the discovery of two new subtypes, have renewed interest in this virus. aMPV causes a well-known respiratory disease in poultry. Domestic species show different susceptibility to aMPV subtypes, whereas sporadic detections in wild birds have revealed links between epidemiology and migration routes. To explore the epidemiology of aMPV in wild species, a molecular survey was conducted on samples that were collected from wild birds during avian influenza surveillance activity in Italy. The samples were screened in pools by multiplex real time RT-PCR assays in order to detect and differentiate subtypes A, B, C, and those that have been newly identified. All the birds were negative, except for a mallard (Anas platyrhynchos) that was positive for aMPV subtype C (sampled in Padua, in the Veneto region, in 2018). The sequencing of partial M and full G genes placed the strain in an intermediate position between European and Chinese clusters. The absence of subtypes A and B supports the negligible role of wild birds, whereas subtype C detection follows previous serological and molecular identifications in Italy. Subtype C circulation in domestic and wild populations emphasizes the importance of molecular test development and adoption to allow the prompt detection of this likely emerging subtype.
Collapse
Affiliation(s)
- Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (C.M.T.); (G.F.); (D.P.); (M.C.)
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (C.M.T.); (G.F.); (D.P.); (M.C.)
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (C.M.T.); (G.F.); (D.P.); (M.C.)
- Correspondence:
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (C.M.T.); (G.F.); (D.P.); (M.C.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.); (G.Q.); (G.G.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.); (G.Q.); (G.G.)
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.); (G.Q.); (G.G.)
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.); (G.Q.); (G.G.)
| | - Emanuela Dal Molin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (E.D.M.); (F.G.)
| | - Federica Gobbo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (E.D.M.); (F.G.)
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (C.M.T.); (G.F.); (D.P.); (M.C.)
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua 16, Viale dell’Università, 35020 Legnaro, Italy
| |
Collapse
|
5
|
Ball C, Manswr B, Herrmann A, Lemiere S, Ganapathy K. Avian metapneumovirus subtype B vaccination in commercial broiler chicks: heterologous protection and selected host transcription responses to subtype A or B challenge. Avian Pathol 2022; 51:181-196. [PMID: 35099352 DOI: 10.1080/03079457.2022.2036697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Avian metapneumovirus (aMPV) causes respiratory disease and drops in egg production in chicken, and is routinely controlled by vaccination. However, the host's immune response to virulent challenge in vaccinated or unvaccinated broiler chickens is poorly characterised. We show that subtype B vaccination offers heterologous (subtype A challenge) and homologous (subtype B challenge) protection. Subtype B challenge causes significantly greater humoral antibody titres in vaccinated and unvaccinated chickens. In turbinate and lung tissues of unvaccinated-challenged chickens, IgA and IgY mRNA transcription was significantly up-regulated after subtype B challenge compared to subtype A. Cellular immunity (CD8-α and CD8-β) gene transcripts were significantly up-regulated during early and later stages of infection from subtype B or subtype A respectively. Immune gene transcriptional responses (IL-1β, IL-6 and IL-18) were significantly up-regulated after challenge. Gene transcription results have shown that mRNA expression levels of CD8-α, CD8-β, TLR3 and IL-6, particularly in turbinate and trachea tissues, are useful parameters to include in future aMPV vaccination-challenge studies.
Collapse
Affiliation(s)
- Christopher Ball
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK
| | - Basim Manswr
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK.,Faculty of Veterinary Medicine, Diyala University, Iraq
| | - Andreas Herrmann
- Boehringer Ingelheim, 69007 Lyon, 29 avenue Tony Garnier, France
| | - Stephane Lemiere
- Boehringer Ingelheim, 69007 Lyon, 29 avenue Tony Garnier, France
| | - Kannan Ganapathy
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK
| |
Collapse
|
6
|
Rüger N, Sid H, Meens J, Szostak MP, Baumgärtner W, Bexter F, Rautenschlein S. New Insights into the Host-Pathogen Interaction of Mycoplasma gallisepticum and Avian Metapneumovirus in Tracheal Organ Cultures of Chicken. Microorganisms 2021; 9:microorganisms9112407. [PMID: 34835532 PMCID: PMC8618481 DOI: 10.3390/microorganisms9112407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Respiratory pathogens are a health threat for poultry. Co-infections lead to the exacerbation of clinical symptoms and lesions. Mycoplasma gallisepticum (M. gallispeticum) and Avian Metapneumovirus (AMPV) are two avian respiratory pathogens that co-circulate worldwide. The knowledge about the host-pathogen interaction of M. gallispeticum and AMPV in the chicken respiratory tract is limited. We aimed to investigate how co-infections affect the pathogenesis of the respiratory disease and whether the order of invading pathogens leads to changes in host-pathogen interaction. We used chicken tracheal organ cultures (TOC) to investigate pathogen invasion and replication, lesion development, and selected innate immune responses, such as interferon (IFN) α, inducible nitric oxide synthase (iNOS) and IFNλ mRNA expression levels. We performed mono-inoculations (AMPV or M. gallispeticum) or dual-inoculations in two orders with a 24-h interval between the first and second pathogen. Dual-inoculations compared to mono-inoculations resulted in more severe host reactions. Pre-infection with AMPV followed by M. gallispeticum resulted in prolonged viral replication, more significant innate immune responses, and lesions (p < 0.05). AMPV as the secondary pathogen impaired the bacterial attachment process. Consequently, the M. gallispeticum replication was delayed, the innate immune response was less pronounced, and lesions appeared later. Our results suggest a competing process in co-infections and offer new insights in disease processes.
Collapse
Affiliation(s)
- Nancy Rüger
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Hicham Sid
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Munich, Germany;
| | - Jochen Meens
- Institute for Microbiology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Michael P. Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Frederik Bexter
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
- Correspondence: ; Tel.: +49-511-953-8779
| |
Collapse
|
7
|
Nguyen VG, Chung HC, Do HQ, Nguyen TT, Cao TBP, Truong HT, Mai TN, Le TT, Nguyen TH, Le TL, Huynh TML. Serological and Molecular Characterization of Avian Metapneumovirus in Chickens in Northern Vietnam. Vet Sci 2021; 8:vetsci8100206. [PMID: 34679036 PMCID: PMC8538526 DOI: 10.3390/vetsci8100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Avian Metapneumovirus (aMPV) is a causative agent of respiratory disease complex in turkeys and chickens that has recently been detected in Vietnam. Due to its novelty, this study was conducted to elucidate the distribution of aMPV in several provinces in northern Vietnam. By the application of Enzyme-Linked Immunosorbent Assay (ELISA) and nested Reverse Transcription-Polymerase Chain Reaction (RT-PCR), this study demonstrated the circulation of aMPV in 12 out of 14 cities/provinces with positive rates of 37.6% and 17.2%, respectively. All nested RT-PCR positive samples were aMPV subgroup B. By pairing the detection results with age groups, it was observed that aMPV infections occurred in chickens of all ages. Additionally, by genetic characterization, aMPV strains were demonstrated to not be attenuated vaccine viruses and to belong to at least two genetic clades. Overall, the obtained results provided insights into the prevalence of aMPV and indicated a greater complexity of respiratory diseases in chickens in Vietnam.
Collapse
Affiliation(s)
- Van-Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
| | - Hee-Chun Chung
- Department of Veterinary Medicine Virology Lab., College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.-C.C.); (H.-Q.D.)
| | - Hai-Quynh Do
- Department of Veterinary Medicine Virology Lab., College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.-C.C.); (H.-Q.D.)
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Thanh-Trung Nguyen
- Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
| | - Thi-Bich-Phuong Cao
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
| | - Ha-Thai Truong
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
| | - Thi-Ngan Mai
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
| | - Thi-Trinh Le
- Vietnam Green Vet Joint Stock Company, Hanoi 100000, Vietnam;
| | - Thi-Hoa Nguyen
- Key Laboratory for Veterinary Biotechnology, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.-H.N.); (T.-L.L.)
| | - Thi-Luyen Le
- Key Laboratory for Veterinary Biotechnology, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.-H.N.); (T.-L.L.)
| | - Thi-My-Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
- Correspondence: ; Tel.: +84-913-081-492
| |
Collapse
|
8
|
|
9
|
Hou L, Wei L, Zhu S, Wang J, Quan R, Li Z, Liu J. Avian metapneumovirus subgroup C induces autophagy through the ATF6 UPR pathway. Autophagy 2017; 13:1709-1721. [PMID: 28949785 PMCID: PMC5640183 DOI: 10.1080/15548627.2017.1356950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
An increasing number of studies have demonstrated that macroautophagy/autophagy plays an important role in the infectious processes of diverse pathogens. However, it remains unknown whether autophagy is induced in avian metapneumovirus (aMPV)-infected host cells, and, if so, how this occurs. Here, we report that aMPV subgroup C (aMPV/C) induces autophagy in cultured cells. We demonstrated this relationship by detecting classical autophagic features, including the formation of autophagsomes, the presence of GFP-LC3 puncta and the conversation of LC3-I into LC3-II. Also, we used pharmacological regulators and siRNAs targeting ATG7 or LC3 to examine the role of autophagy in aMPV/C replication. The results showed that autophagy is required for efficient replication of aMPV/C. Moreover, infection with aMPV/C promotes autophagosome maturation and induces a complete autophagic process. Finally, the ATF6 pathway, of which one component is the unfolded protein response (UPR), becomes activated in aMPV/C-infected cells. Knockdown of ATF6 inhibited aMPV/C-induced autophagy and viral replication. Collectively, these results not only show that autophagy promotes aMPV/C replication in the cultured cells, but also reveal that the molecular mechanisms underlying aMPV/C-induced autophagy depends on regulation of the ER stress-related UPR pathway.
Collapse
Affiliation(s)
- Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
10
|
Tucciarone CM, Andreopoulou M, Franzo G, Prentza Z, Chaligiannis I, Cecchinato M. First Identification and Molecular Characterization of Avian metapneumovirus Subtype B from Chickens in Greece. Avian Dis 2017; 61:409-413. [DOI: 10.1637/11631-032017-caser] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Marianna Andreopoulou
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Zoi Prentza
- Department of Avian Pathology, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, 43100, Karditsa, Greece
| | - Ilias Chaligiannis
- Directorate of Veterinary Center of Thessaloniki, Ministry of Rural Development and Food, 26th October Street 80, 54627, Thessaloniki, Greece
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
11
|
A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines. Methods Mol Biol 2016. [PMID: 27076293 DOI: 10.1007/978-1-4939-3389-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. aMPV belongs to the family Paramyxoviridae which includes many important human pathogens such as human respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (PIV3). The family also includes highly lethal emerging pathogens such as Nipah virus and Hendra virus, as well as agriculturally important viruses such as Newcastle disease virus (NDV). For many of these viruses, there is no effective vaccine. Here, we describe a reverse genetics approach to develop live attenuated aMPV vaccines by inhibiting the viral mRNA cap methyltransferase. The viral mRNA cap methyltransferase is an excellent target for the attenuation of paramyxoviruses because it plays essential roles in mRNA stability, efficient viral protein translation and innate immunity. We have described in detail the materials and methods used to generate recombinant aMPVs that lack viral mRNA cap methyltransferase activity. We have also provided methods to evaluate the genetic stability, pathogenesis, and immunogenicity of live aMPV vaccine candidates in turkeys.
Collapse
|
12
|
Yun B, Zhang Y, Liu Y, Guan X, Wang Y, Qi X, Cui H, Liu C, Zhang Y, Gao H, Gao L, Li K, Gao Y, Wang X. TMPRSS12 Is an Activating Protease for Subtype B Avian Metapneumovirus. J Virol 2016; 90:11231-11246. [PMID: 27707927 PMCID: PMC5126379 DOI: 10.1128/jvi.01567-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022] Open
Abstract
The entry of avian metapneumovirus (aMPV) into host cells initially requires the fusion of viral and cell membranes, which is exclusively mediated by fusion (F) protein. Proteolysis of aMPV F protein by endogenous proteases of host cells allows F protein to induce membrane fusion; however, these proteases have not been identified. Here, we provide the first evidence that the transmembrane serine protease TMPRSS12 facilitates the cleavage of subtype B aMPV (aMPV/B) F protein. We found that overexpression of TMPRSS12 enhanced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. Subsequently, knockdown of TMPRSS12 with specific small interfering RNAs (siRNAs) reduced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. We also found a cleavage motif in the aMPV/B F protein (amino acids 100 and 101) that was recognized by TMPRSS12. The histidine, aspartic acid, and serine residue (HDS) triad of TMPRSS12 was shown to be essential for the proteolysis of aMPV/B F protein via mutation analysis. Notably, we observed TMPRSS12 mRNA expression in target organs of aMPV/B in chickens. Overall, our results indicate that TMPRSS12 is crucial for aMPV/B F protein proteolysis and aMPV/B infectivity and that TMPRSS12 may serve as a target for novel therapeutics and prophylactics for aMPV. IMPORTANCE Proteolysis of the aMPV F protein is a prerequisite for F protein-mediated membrane fusion of virus and cell and for aMPV infection; however, the proteases used in vitro and vivo are not clear. A combination of analyses, including overexpression, knockdown, and mutation methods, demonstrated that the transmembrane serine protease TMPRSS12 facilitated cleavage of subtype B aMPV (aMPV/B) F protein. Importantly, we located the motif in the aMPV/B F protein recognized by TMPRSS12 and the catalytic triad in TMPRSS12 that facilitated proteolysis of the aMPV/B F protein. This is the first report on TMPRSS12 as a protease for proteolysis of viral envelope glycoproteins. Our study will shed light on the mechanism of proteolysis of aMPV F protein and pathogenesis of aMPV.
Collapse
Affiliation(s)
- Bingling Yun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yao Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaolu Guan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, People's Republic of China
| |
Collapse
|
13
|
Hartmann S, Sid H, Rautenschlein S. Avian metapneumovirus infection of chicken and turkey tracheal organ cultures: comparison of virus-host interactions. Avian Pathol 2016; 44:480-9. [PMID: 26365279 DOI: 10.1080/03079457.2015.1086974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Avian metapneumovirus (aMPV) is a pathogen with worldwide distribution, which can cause high economic losses in infected poultry. aMPV mainly causes infection of the upper respiratory tract in both chickens and turkeys, although turkeys seem to be more susceptible. Little is known about virus-host interactions at epithelial surfaces after aMPV infection. Tracheal organ cultures (TOC) are a suitable model to investigate virus-host interaction in the respiratory epithelium. Therefore, we investigated virus replication rates and lesion development in chicken and turkey TOC after infection with a virulent aMPV subtype A strain. Aspects of the innate immune response, such as interferon-α and inducible nitric oxide synthase mRNA expression, as well as virus-induced apoptosis were determined. The aMPV-replication rate was higher in turkey (TTOC) compared to chicken TOC (CTOC) (P < 0.05), providing circumstantial evidence that indeed turkeys may be more susceptible. The interferon-α response was down-regulated from 2 to 144 hours post infection in both species compared to virus-free controls (P < 0.05); this was more significant for CTOC than TTOC. Inducible nitric oxide synthase expression was significantly up-regulated in aMPV-A-infected TTOC and CTOC compared to virus-free controls (P < 0.05). However, the results suggest that NO may play a different role in aMPV pathogenesis between turkeys and chickens as indicated by differences in apoptosis rate and lesion development between species. Overall, our study reveals differences in innate immune response regulation and therefore may explain differences in aMPV - A replication rates between infected TTOC and CTOC, which subsequently lead to more severe clinical signs and a higher rate of secondary infections in turkeys.
Collapse
Affiliation(s)
- Sandra Hartmann
- a Clinic for Poultry , University of Veterinary Medicine Hannover , Hannover , Germany
| | - Hicham Sid
- a Clinic for Poultry , University of Veterinary Medicine Hannover , Hannover , Germany
| | - Silke Rautenschlein
- a Clinic for Poultry , University of Veterinary Medicine Hannover , Hannover , Germany
| |
Collapse
|
14
|
Yun BL, Guan XL, Liu YZ, Zhang Y, Wang YQ, Qi XL, Cui HY, Liu CJ, Zhang YP, Gao HL, Gao L, Li K, Gao YL, Wang XM. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection. J Biol Chem 2016; 291:14815-25. [PMID: 27226547 DOI: 10.1074/jbc.m115.711382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV.
Collapse
Affiliation(s)
- Bing-Ling Yun
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Xiao-Lu Guan
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yong-Zhen Liu
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yao Zhang
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yong-Qiang Wang
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Xiao-Le Qi
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Hong-Yu Cui
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Chang-Jun Liu
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yan-Ping Zhang
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Hong-Lei Gao
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Li Gao
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Kai Li
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yu-Long Gao
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Xiao-Mei Wang
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and the Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
15
|
Awad F, Chhabra R, Forrester A, Chantrey J, Baylis M, Lemiere S, Hussein HA, Ganapathy K. Experimental infection of IS/885/00-like infectious bronchitis virus in specific pathogen free and commercial broiler chicks. Res Vet Sci 2016; 105:15-22. [PMID: 27033901 PMCID: PMC7111892 DOI: 10.1016/j.rvsc.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/19/2015] [Accepted: 01/03/2016] [Indexed: 01/24/2023]
Abstract
Pathogenesis of an IS/885/00-like (IS/885) strain of variant infectious bronchitis virus (IBV) was examined in one day old specific pathogen free (SPF) and commercial broiler chicks. Chicks were humanely euthanized at 3, 6, 9, 12, 15, 21 and 28 days post infection (dpi) for necropsy examination, and tissues were collected for histopathology and virus detection by reverse transcription polymerase chain reaction (RT-PCR). Respiratory clinical signs and gross lesions consisting of tracheal caseous exudate and plugs, and swollen kidneys (with or without) urate deposits were observed in SPF and broiler chicks. The onset of disease developed more slowly and were of lesser severity in broiler compared to SPF chicks, reflecting the inhibitory effects of the IBV maternal-antibodies in the broiler chicks or genetic/strain susceptibility, or both. Head swelling was observed in one infected broiler chick at 15 dpi and the virus was recovered by RT-PCR and isolation. In the IS/885-infected SPF chicks, cystic oviducts were found in two female chicks. IS/885 was isolated from the cystic fluid. Using ELISA, low to moderate levels of the antibodies to IBV was detected in the SPF compared to broiler infected chicks. Pathogenesis of IBV IS/885 was examined in one day old SPF and broiler chicks. The virus caused respiratory distress, tracheal and kidney lesions in infected chicks. Head swelling was observed in one infected broiler chick at 15 dpi. Cystic oviducts were found in two female SPF chicks. IBV IS/885 examined in this study was pathogenic for both SPF and broiler chicks.
Collapse
Affiliation(s)
- Faez Awad
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK; University of Omar Al-Mukhtar, Faculty of Veterinary Medicine, Al-Bayda, Libya
| | - Rajesh Chhabra
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK
| | - Anne Forrester
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK
| | - Julian Chantrey
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK
| | - Matthew Baylis
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | | | - Hussein Aly Hussein
- Cairo University, Department of Virology, Faculty of Veterinary Medicine, Cairo, Egypt
| | - Kannan Ganapathy
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK.
| |
Collapse
|
16
|
Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294. Sci Rep 2015; 5:15584. [PMID: 26498473 PMCID: PMC4620442 DOI: 10.1038/srep15584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/29/2015] [Indexed: 12/03/2022] Open
Abstract
Avian metapneumovirus (aMPV) and human metapneumovirus (hMPV) are members of the genus Metapneumovirus in the subfamily Pneumovirinae. Metapneumovirus fusion (F) protein mediates the fusion of host cells with the virus membrane for infection. Trypsin- and/or low pH-induced membrane fusion is a strain-dependent phenomenon for hMPV. Here, we demonstrated that three subtypes of aMPV (aMPV/A, aMPV/B, and aMPV/C) F proteins promoted cell-cell fusion in the absence of trypsin. Indeed, in the presence of trypsin, only aMPV/C F protein fusogenicity was enhanced. Mutagenesis of the amino acids at position 100 and/or 101, located at a putative cleavage region in aMPV F proteins, revealed that the trypsin-mediated fusogenicity of aMPV F proteins is regulated by the residues at positions 100 and 101. Moreover, we demonstrated that aMPV/A and aMPV/B F proteins mediated cell-cell fusion independent of low pH, whereas the aMPV/C F protein did not. Mutagenesis of the residue at position 294 in the aMPV/A, aMPV/B, and aMPV/C F proteins showed that 294G played a critical role in F protein-mediated fusion under low pH conditions. These findings on aMPV F protein-induced cell-cell fusion provide new insights into the molecular mechanisms underlying membrane fusion and pathogenesis of aMPV.
Collapse
|
17
|
Methyltransferase-defective avian metapneumovirus vaccines provide complete protection against challenge with the homologous Colorado strain and the heterologous Minnesota strain. J Virol 2014; 88:12348-63. [PMID: 25122790 DOI: 10.1128/jvi.01095-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. Since its discovery in the 1970s, aMPV has been recognized as an economically important pathogen in the poultry industry worldwide. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at guanine N-7 (G-N-7) and ribose 2'-O positions. In this study, we generated a panel of recombinant aMPV (raMPV) Colorado strains carrying mutations in the S-adenosyl methionine (SAM) binding site in the CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O, but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of specific-pathogen-free (SPF) young turkeys. Importantly, turkeys vaccinated with these MTase-defective raMPVs triggered a high level of neutralizing antibody and were completely protected from challenge with homologous aMPV Colorado strain and heterologous aMPV Minnesota strain. Collectively, our results indicate (i) that aMPV lacking 2'-O methylation is highly attenuated in vitro and in vivo and (ii) that inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for aMPV and perhaps other paramyxoviruses. IMPORTANCE Paramyxoviruses include many economically and agriculturally important viruses such as avian metapneumovirus (aMPV), and Newcastle disease virus (NDV), human pathogens such as human respiratory syncytial virus, human metapneumovirus, human parainfluenza virus type 3, and measles virus, and highly lethal emerging pathogens such as Nipah virus and Hendra virus. For many of them, there is no effective vaccine or antiviral drug. These viruses share common strategies for viral gene expression and replication. During transcription, paramyxoviruses produce capped, methylated, and polyadenylated mRNAs. Using aMPV as a model, we found that viral ribose 2'-O methyltransferase (MTase) is a novel approach to rationally attenuate the virus for vaccine purpose. Recombinant aMPV (raMPV) lacking 2'-O MTase were not only highly attenuated in turkeys but also provided complete protection against the challenge of homologous and heterologous aMPV strains. This novel approach can be applicable to other animal and human paramyxoviruses for rationally designing live attenuated vaccines.
Collapse
|
18
|
Awad F, Baylis M, Jones RC, Ganapathy K. Evaluation of Flinders Technology Associates cards for storage and molecular detection of avian metapneumoviruses. Avian Pathol 2014; 43:125-9. [DOI: 10.1080/03079457.2014.885114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Gharaibeh S, Shamoun M. Avian Metapneumovirus Subtype B Experimental Infection and Tissue Distribution in Chickens, Sparrows, and Pigeons. Vet Pathol 2011; 49:704-9. [DOI: 10.1177/0300985811402845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Avian metapneumovirus (aMPV) is a respiratory virus that infects a range of avian hosts, including chickens and turkeys. Migratory and local wild birds are implicated in aMPV spread among farms, countries, and seasonal outbreaks of the disease. A subtype B aMPV isolate from commercial chicken flocks suffering from respiratory disease was experimentally inoculated oculonasally into 7-week old chickens, young pigeons, and sparrows. Chickens showed minimal tracheal rales, whereas pigeons and sparrows were asymptomatic. Shedding of aMPV was detected by reverse transcription polymerase chain reaction on homogenates from nasal turbinates. At 5 days postinfection, 5 of 5 chickens, 2 of 5 pigeons, and 1 of 5 sparrows were positive; at 10 or 15 days, none were positive. At 2 and 5 days, aMPV antigens were localized at the ciliated boarder of respiratory epithelium in nasal cavity and trachea of chickens, as well as to the conjunctival epithelium. Pigeons had detectable viral antigens in only the trachea at 2 and 5 days; sparrow tissues did not show any positive staining. At the end of the experiment, at 21 days postinfection, 14 of 15 inoculated chickens seroconverted against aMPV, but none of the inoculated pigeons or sparrows did. The authors believe that pigeons and sparrows have the ability to transmit the virus between chicken farms, although they do not consider pigeons and sparrows as natural hosts for aMPV, given that they failed to seroconvert. In conclusion, pigeons and sparrows are partially susceptible to aMPV infection, probably acting more as mechanical vectors because infection is only temporary and short-lived.
Collapse
Affiliation(s)
- S. Gharaibeh
- Department of Pathology and Animal Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - M. Shamoun
- Department of Pathology and Animal Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
20
|
Choi KS, Lee EK, Jeon WJ, Park MJ, Yoo YN, Kwon JH. Diagnostic utility of egg yolk for the detection of avian metapneumovirus antibodies in laying hens. Avian Dis 2011; 54:1230-6. [PMID: 21313844 DOI: 10.1637/9382-042710-reg.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Surveillance and diagnosis of avian metapneumovirus (AMPV) infection typically involve measurement of serum antibodies. In the current study, eggs instead of serum samples were used for the detection of AMPV antibodies in egg-laying chicken hens by enzyme-linked immunosorbent assay (ELISA). AMPV-free commercial layer hens were experimentally challenged with AMPV strain SC1509 through intravenous or oculonasal administration. Antibody levels were determined by ELISA. AMPV antibodies were detected in egg yolks from challenged hens by 7 days postinoculation (dpi), with the peak titer at 16 dpi. Antibody levels in eggs laid at 28 dpi correlated well (r = 0.93) with sera taken 28 dpi from the same hens. In a field trial of the yolk ELISA, six broiler breeder farms were surveyed, and all tested positive for AMPV antibodies in hen eggs, although positivity varied from farm to farm. Abnormal discolored eggs collected from outbreak farms had significantly higher titers of AMPV yolk antibodies than normal eggs from the same farm, unlike clinically healthy farms, where normal and abnormal eggs had similar antibody titers. These results indicate that diagnosis of AMPV infection by yolk ELISA to detect anti-AMPV antibodies may be a suitable alternative to serologic testing.
Collapse
Affiliation(s)
- Kang-Seuk Choi
- Avian Diseases Division, National Veterinary Research and Quarantine Service, 480 Anyang-6, Anyang, Gyeonggi 430-757, South Korea.
| | | | | | | | | | | |
Collapse
|
21
|
Rautenschlein S, Aung YH, Haase C. Local and systemic immune responses following infection of broiler-type chickens with avian Metapneumovirus subtypes A and B. Vet Immunol Immunopathol 2010; 140:10-22. [PMID: 21183227 DOI: 10.1016/j.vetimm.2010.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 11/03/2010] [Accepted: 11/08/2010] [Indexed: 12/12/2022]
Abstract
Infections with avian Metapneumovirus (aMPV) are often associated with swollen head syndrome in meat type chickens. Previous studies in turkeys have demonstrated that local humoral and cell-mediated immunity plays a role in aMPV-infection. Previous experimental and field observations indicated that the susceptibility of broilers and their immune reactions to aMPV may differ from turkeys. In the presented study local and systemic immune reactions of broilers were investigated after experimental infections with subtypes A and B aMPV of turkey origin. Both virus subtypes induced a mild respiratory disease. The recovery from respiratory signs correlated with the induction of local and systemic aMPV virus-neutralizing antibodies, which began to rise at 6 days post infection (dpi), when the peak of clinical signs was observed. In a different manner to the virus neutralizing (VN) and IgG-ELISA serum antibody titres, which showed high levels until the end of the experiments between 24 and 28 dpi, the specific IgA-ELISA and VN-antibody levels in tracheal washes decreased by 10 and 14 dpi, respectively, which may explain the recurring aMPV-infections in the field. Ex vivo cultured spleen cells from aMPV-infected broilers released at 3 and 6 dpi higher levels of IFN-γ after stimulation with Concanavalin A as compared to virus-free birds. In agreement with studies in turkeys, aMPV-infected broilers showed a clear CD4+ T cell accumulation in the Harderian gland (HG) at 6 dpi (P<0.05). In contrast to other investigations in turkeys aMPV-infected broilers showed an increase in the number of CD8alpha+ cells at 6 dpi compared to virus-free birds (P<0.05). The numbers of local B cells in the Harderian gland were not affected by the infection. Both aMPV A and B induced up-regulation of interferon (IFN)-γ mRNA-expression in the nasal turbinates, while in the Harderian gland only aMPV-A induced enhanced IFN-γ expression at 3 dpi. The differences in systemic and local T cell and possibly natural killer cell activity in the HG between turkeys and chickens may explain the differences in aMPV-pathogenesis between these two species.
Collapse
Affiliation(s)
- Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany.
| | | | | |
Collapse
|
22
|
Rubbenstroth D, Rautenschlein S. Compromised T-cell immunity in turkeys may lead to an unpredictable avian metapneumovirus vaccine response and variable protection against challenge. Avian Pathol 2010; 39:349-57. [DOI: 10.1080/03079457.2010.507240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|