1
|
Ou X, Mao S, Dong J, Chen J, Sun D, Wang M, Zhu D, Jia R, Chen S, Liu M, Yang Q, Wu Y, Zhao X, Zhang S, Huang J, Gao Q, Liu Y, Zhang L, Miao Z, Li Y, Li Y, Pan Q, Cheng A. A proposed disease classification system for duck viral hepatitis. Poult Sci 2022; 101:102042. [PMID: 35905549 PMCID: PMC9334327 DOI: 10.1016/j.psj.2022.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022] Open
Abstract
The nomenclature of duck viral hepatitis (DVH) was historically not a problem. However, 14 hepatotropic viruses among 10 different genera are associated with the same disease name, DVH. Therefore, the disease name increasingly lacks clarity and may no longer fit the scientific description of the disease. Because one disease should not be attributed to 10 genera of viruses, this almost certainly causes misunderstanding regarding the disease-virus relationship. Herein, we revisited the problem and proposed an update to DVH disease classification. This classification is based on the nomenclature of human viral hepatitis and the key principle of Koch's postulates (“one microbe and one disease”). In total, 10 types of disease names have been proposed. These names were literately matched with hepatitis-related viruses. We envision that this intuitive nomenclature system will facilitate scientific communication and consistent interpretation in this field, especially in the Asian veterinary community, where these diseases are most commonly reported.
Collapse
Affiliation(s)
- Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Jingwen Dong
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Jiayi Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, the Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, the Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, the Netherlands; Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Hassan TIR, Eid AAM, Ghanem IAI, Shahin AM, Adael SAA, Mohamed FF. First Report of Duck Hepatitis A Virus 3 from Duckling Flocks of Egypt. Avian Dis 2021; 64:269-276. [PMID: 33205161 DOI: 10.1637/aviandiseases-d-19-00158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/26/2020] [Indexed: 11/05/2022]
Abstract
Duck hepatitis A viruses (DHAV-1, DHAV-2, and DHAV-3) are the predominant causes of duck virus hepatitis (DVH), a disease of ducklings that leads to massive morbidities, mortalities, and economic losses. As a duck-producing country, Egypt suffered lately from several attacks of DVH, despite the regular vaccination of birds. Between Spring 2016 and Summer 2018, 54 duckling flocks in the Sharkia province of Egypt were tested using the reverse-transcription PCR (RT-PCR) based on the DHAV-3D targeting primers. Of them, 27.8% (15/54) were positive. Upon retesting of positive samples using RT-PCR and duck hepatitis A virus (DHAV)-3 VP1-based primers, 33.3% (5/15) contained DHAV-3 RNA. For further analysis at the molecular level, the VP1 and the 3D genes were sequenced using the same primer sets used earlier. The phylogenetic trees confirmed that study sequences belonged to DHAV-3. However, they were displayed as a separate cluster following a geographically dependent distribution. They were also completely unrelated to the Egyptian DHAV-1-based vaccine. This was further confirmed by low nucleotide and amino acid identities in relation to this vaccine. In addition, the VP1 and 3D genes had the same phylogenetic topography. The study VP1 sequences had three unique amino acid substitutions (L59, V208 only in one strain, and C219). As far as we know, this is the first report on DHAV-3 outside Asia, particularly in Egypt. Accordingly, the vaccination strategy against DHAV should be quickly updated to avoid further dissemination of the virus. The epidemiology, pathogenicity, and evolution of DHAV-3 should be carefully monitored in Egypt.
Collapse
Affiliation(s)
- Tamer I R Hassan
- Department of Poultry Diseases, Animal Health Research Institute (Zagazig Branch), Zagazig, Sharkia, 44511 Egypt
| | - Amal A M Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511 Egypt
| | - Ibrahim A I Ghanem
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511 Egypt
| | - Abeer M Shahin
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511 Egypt
| | - Samy A A Adael
- Department of Poultry Diseases, Animal Health Research Institute (Zagazig Branch), Zagazig, Sharkia, 44511 Egypt
| | - Fakry F Mohamed
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511 Egypt
| |
Collapse
|
3
|
Cao J, Zhang Y, Chen Y, Liang S, Liu D, Fan W, Xu Y, Liu H, Zhou Z, Liu X, Hou S. Dynamic Transcriptome Reveals the Mechanism of Liver Injury Caused by DHAV-3 Infection in Pekin Duck. Front Immunol 2020; 11:568565. [PMID: 33240261 PMCID: PMC7677298 DOI: 10.3389/fimmu.2020.568565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/08/2020] [Indexed: 01/17/2023] Open
Abstract
Duck hepatitis A virus 3 (DHAV-3) is a wild endemic virus, which seriously endangers the duck industry in China. The present study aims to elucidate the mechanism of duck resistance to DHAV-3 infection. Both resistant and susceptible ducks were challenged with DHAV-3 in this experiment. The histopathological features and serum biochemical indices (ALT and AST) were analyzed to estimate liver injury status at 6, 12, 15, and 24 h post-infection (hpi). The dynamic transcriptomes of liver were analyzed to explain the molecular regulation mechanism in ducks against DHAV-3. The result showed that the liver injury in susceptible ducks was more serious than that in the resistant ducks throughout the four time points. A total of 2,127 differentially expressed genes (DEGs) were identified by comparing the transcriptome of the two populations. The expression levels of genes involved in innate immune response increased rapidly in susceptible ducks from 12 hpi. Similarly, the expression of genes involved in cytokine regulation also increased at the same time points, while the expression levels of these genes in resistant ducks remained similar between the various time points. KEGG enrichment analysis of the DEGs revealed that the genes involved in cytokine regulation and apoptosis were highly expressed in susceptible ducks than that in resistant ducks, suggesting that excessive cytokine storm and apoptosis may partially explain the mechanism of liver injury caused by DHAV-3 infection. Besides, we found that the FUT9 gene may contribute to resistance towards DHAV-3 in resistant ducklings. These findings will provide insight into duck resistance and susceptibility to DHAV-3 infection in the early phases, facilitate the development of a strategy for DHAV-3 prevention and treatment, and enhance genetic resistance via genetic selection in animal breeding.
Collapse
Affiliation(s)
- Junting Cao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Chen
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suyun Liang
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapeng Liu
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Fan
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yaxi Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hehe Liu
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengkui Zhou
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolin Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuisheng Hou
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Niu Y, Ma H, Ding Y, Li Z, Sun Y, Li M, Shi Y. The pathogenicity of duck hepatitis A virus types 1 and 3 on ducklings. Poult Sci 2020; 98:6333-6339. [PMID: 31393586 PMCID: PMC8913754 DOI: 10.3382/ps/pez455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 01/24/2023] Open
Abstract
Duck hepatitis A virus (DHAV) is one of the pathogens that cause fatal duck viral hepatitis (DVH) in ducklings, which is an acute and contagious disease with a high mortality rate. Despite a continuing official duck vaccination program, DHAV infection remains a major threat to the duck industry. Considerable changes were observed in the epidemiology of DHAV-1/-3 in China over time. Therefore, comparing the pathogenicity of different DHAV serotypes can provide a theoretical basis for the diagnosis and prevention of DVH. In this study, we systematically investigated the effects of infection with DHAV-1/-3 field strains on clinical signs, gross lesions, histopathological changes, viral RNA detection, enzymatic systems, and metabolite concentrations. The results demonstrated that the major macroscopic and microscopic lesions in ducks infected with DHAV-1/-3 in the liver, brain, spleen, pancreas, and kidneys exhibited no significant differences. After 24 h of infection, DHAV quickly appeared in blood and major organs. Significant changes in clinical chemical markers together with histopathological lesions and viral RNA detection indicated that the liver is the major target organ for both viruses, resulting in impaired of liver integrity and function. In addition, we found that both viruses were able to invade both central and peripheral immune organs. Also lipase plasma activity was substantially affected by DHAV-1/-3, indicating that the integrity and function of the pancreas was compromised. However, there was no significant difference in pathogenicity between DHAV-1 and -3. The results of this study provide new insights into the pathogenesis of DHAV-1/3, two viruses that cause serious depression, metabolic disorders, and immunosuppression.
Collapse
Affiliation(s)
- Yujuan Niu
- The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Haiying Ma
- Zhejiang Shihua Nobel Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, 310018, China
| | - Yonghe Ding
- The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Yuanchao Sun
- The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Meihang Li
- The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong Province, 266003, China
| |
Collapse
|
5
|
Wen X, Guo J, Sun D, Wang M, Cao D, Cheng A, Zhu D, Liu M, Zhao X, Yang Q, Chen S, Jia R, Wu Y, Zhang S, Mao S, Ou X, Chen X, Yu Y, Zhang L, Liu Y, Tian B, Pan L, Rehman MU. Mutations in VP0 and 2C Proteins of Duck Hepatitis A Virus Type 3 Attenuate Viral Infection and Virulence. Vaccines (Basel) 2019; 7:vaccines7030111. [PMID: 31514454 PMCID: PMC6789628 DOI: 10.3390/vaccines7030111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Duck hepatitis A virus (DHAV) is prevalent worldwide and has caused significant economic losses. As the predominant serotype in China, DHAV-3 has become a major challenge to the local duck industry. Here the genetics and pathogenesis of a virulent DHAV-3 strain and its embryo-passaged strain were assessed. There were only two amino acid substitutions (Y164N in VP0 protein and L71I in 2C protein) introduced during the adaptation process. The pathogenicity of these strains was further evaluated in vivo. Clinical signs, gross pathology, and histopathological analysis showed that the embryo-passaged strain was attenuated. Meanwhile, the viral RNA loads were significantly lower in the liver tissues of the ducklings infected with the attenuated strain. As expected, infection with the virulent and attenuated strains led to the activation of different innate immune genes. We suspected that the loss of replication efficiency in ducklings was responsible for the attenuation phenotype of the embryo-passaged strain. In addition, different innate immune responses in the liver of ducklings were at least partly responsible for the differential infectivity phenotype. These findings provide new insights into the genetics and pathogenesis of DHAV-3, which may aid the development of new vaccines and the implementation of immunization strategies.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Jinlong Guo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Dian Cao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
6
|
Zhu T, Qi B, Liu R, Jiang X, Lu R, Xiao L, Fu G, Fu Q, Shi S, Wan C, Huang Y. Comparative pathogenicity of two subtypes (hepatitis-type and pancreatitis-type) of duck hepatitis A virus type 1 in experimentally infected Muscovy ducklings. Avian Pathol 2019; 48:352-361. [PMID: 30982334 DOI: 10.1080/03079457.2019.1605146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Duck hepatitis A virus type 1 (DHAV-1) causes acute hepatitis with high morbidity and mortality in ducklings of the genera Cairina and Anas and is characterized by ecchymotic haemorrhage and necrosis of the liver surface. Since September 2011, a new subtype of DHAV-1 (named pancreatitis-type DHAV-1) has been isolated. This new subtype is characterized by yellowish or haemorrhagic pancreatitis, but with no significant pathological changes in the liver. To further investigate the difference in pathogenicity between hepatitis-type DHAV-1 and pancreatitis-type DHAV-1, we infected Muscovy ducklings with a hepatitis-type DHAV-1 strain, FZ86, or a pancreatitis-type DHAV-1 strain, MPZJ1206, and then compared the resulting gross lesions, histopathological changes, viral distribution and cellular apoptosis in the liver and pancreas of Muscovy ducklings. The results suggested that FZ86 induced a more efficient viral propagation in the liver than MPZJ1206, and the gross and histopathological lesions were also limited to the liver. However, MPZJ1206 induced more effective viral replication in the pancreas than FZ86. The MPZJ1206-infected Muscovy ducklings showed an obviously yellowed and haemorrhagic pancreas, but with no significant pathological changes in the liver. Furthermore, FZ86 induced notable hepatocyte apoptosis and increased the expression of caspase-3 in the liver, whereas MPZJ1206 caused apoptosis in a large number of acinar epithelial cells and elevated the expression of caspase-3 in the pancreas. Taken together, these results demonstrated that pancreatitis-type DHAV-1 has many new pathogenic features which distinguish it from the hepatitis-type DHAV-1. RESEARCH HIGHLIGHTS Pancreatitis-type DHAV-1 (MPZJ1206) was characterized by pancreatic haemorrhage and yellow discolouration, but with no obvious haemorrhage and necrosis in the liver. Pancreatitis-type DHAV-1 (MPZJ1206) exhibits many new pathogenic features which distinguish it from the hepatitis-type DHAV-1 (FZ86).
Collapse
Affiliation(s)
- Ting Zhu
- a Key Laboratory of Fujian-Taiwan Animal Pathogen Biology , College of Animal Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Baomin Qi
- a Key Laboratory of Fujian-Taiwan Animal Pathogen Biology , College of Animal Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Rongchang Liu
- b Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science , Fuzhou , People's Republic of China.,c Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention , Fuzhou , People's Republic of China
| | - Xueli Jiang
- a Key Laboratory of Fujian-Taiwan Animal Pathogen Biology , College of Animal Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Ronghui Lu
- a Key Laboratory of Fujian-Taiwan Animal Pathogen Biology , College of Animal Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Longhua Xiao
- a Key Laboratory of Fujian-Taiwan Animal Pathogen Biology , College of Animal Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Guanghua Fu
- b Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science , Fuzhou , People's Republic of China.,c Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention , Fuzhou , People's Republic of China
| | - Qiuling Fu
- b Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science , Fuzhou , People's Republic of China.,c Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention , Fuzhou , People's Republic of China
| | - Shaohua Shi
- b Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science , Fuzhou , People's Republic of China.,c Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention , Fuzhou , People's Republic of China
| | - Chunhe Wan
- b Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science , Fuzhou , People's Republic of China.,c Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention , Fuzhou , People's Republic of China
| | - Yu Huang
- b Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science , Fuzhou , People's Republic of China.,c Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention , Fuzhou , People's Republic of China
| |
Collapse
|
7
|
Liu R, Shi S, Huang Y, Chen Z, Chen C, Cheng L, Fu G, Chen H, Wan C, Fu Q. Comparative pathogenicity of different subtypes of duck hepatitis A virus in Pekin ducklings. Vet Microbiol 2018; 228:181-187. [PMID: 30593365 DOI: 10.1016/j.vetmic.2018.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 01/21/2023]
Abstract
Duck hepatitis A virus (DHAV) is a major pathogen of viral hepatitis in ducks, which is a fatal and contagious disease of young ducklings. Despite the identification of numerous DHAV strains (e.g. DHAV-3, DHAV-2, DHAV-1 and DHAV-1a), the pathogenic differences among the different subtypes have not been evaluated. The objective of this study was to compare the pathogenic properties of three epidemic strains DHAV-3, DHAV-1, and DHAV-1a in mainland China, in a Pekin duckling infection model. We evaluated the pathogenicity of these different subtypes by investigating clinical signs, macroscopic and microscopic lesions, immunohistochemical examination, and viral RNA detection after experimental inoculation of Pekin ducklings with the three different DHAV strains. There was no significant difference in pathogenicity between DHAV-3 and DHAV-1. Pathogenicity of DHAV-1a differed significantly from that of classical duck hepatitis A (DHAV-3 or DHAV-1), in that there were no clinical signs of opisthotonos. More importantly, pancreatic bleeding or yellowing, and spleen swelling and bleeding were the predominant lesions in the DHAV-1a group, while liver and spleen lesions were the main signs in classical hepatitis (DHAV-1/3). Our findings indicate that there are differences in the pathogenicity of different subtypes of DHAV in ducklings, which may be useful for understanding the biological characteristics of the different subtypes of DHAV in ducks.
Collapse
Affiliation(s)
- Rongchang Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| | - Shaohua Shi
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China.
| | - Zhen Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| | - Cuiteng Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| | - Longfei Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| | - Hongmei Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| | - Qiuling Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| |
Collapse
|
8
|
Zhang X, Cao C, Liu Y, Qi H, Zhang W, Hao C, Chen H, Zhang Q, Zhang W, Gao M, Wang J, Ma B. Comparative liver transcriptome analysis in ducklings infected with duck hepatitis A virus 3 (DHAV-3) at 12 and 48 hours post-infection through RNA-seq. Vet Res 2018; 49:52. [PMID: 29925406 PMCID: PMC6011267 DOI: 10.1186/s13567-018-0545-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/23/2018] [Indexed: 01/18/2023] Open
Abstract
Duck hepatitis A virus 3 (DHAV-3), the only member of the novel genus Avihepatovirus, in the family Picornaviridae, can cause significant economic losses for duck farms in China. Reports on the pathogenicity and the antiviral molecular mechanisms of the lethal DHAV-3 strain in ducklings are inadequate and remain poorly understood. We conducted global gene expression profiling and screened differentially expressed genes (DEG) of duckling liver tissues infected with lethal DHAV-3. There were 1643 DEG and 8979 DEG when compared with mock ducklings at 12 hours post-infection (hpi) and at 48 hpi, respectively. Gene pathway analysis of DEG highlighted mainly biological processes involved in metabolic pathways, host immune responses, and viral invasion. The results may provide valuable information for us to explore the pathogenicity of the virulent DHAV-3 strain and to improve our understanding of host–virus interactions.
Collapse
Affiliation(s)
- Xuelian Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong Province, China
| | - Chong Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haihui Qi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wenjing Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chunxue Hao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haotian Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wenlong Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Mingchun Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. .,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeast Agricultural University, Harbin, 150030, China.
| | - Bo Ma
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. .,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
9
|
Zhang X, Cao C, Qu Z, Zhang W, Liu Y, Qi H, Hao C, Zhang W, Gao M, Wang J, Ma B. Pathogenicity of duck hepatitis A virus type 3 and innate immune responses of the ducklings to virulent DHAV-3. Mol Immunol 2018; 95:30-38. [DOI: 10.1016/j.molimm.2018.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/17/2017] [Accepted: 01/19/2018] [Indexed: 12/24/2022]
|
10
|
Abstract
Viral hepatitis in poultry is a complex disease syndrome caused by several viruses belonging to different families including avian hepatitis E virus (HEV), duck hepatitis B virus (DHBV), duck hepatitis A virus (DHAV-1, -2, -3), duck hepatitis virus Types 2 and 3, fowl adenoviruses (FAdV), and turkey hepatitis virus (THV). While these hepatitis viruses share the same target organ, the liver, they each possess unique clinical and biological features. In this article, we aim to review the common and unique features of major poultry hepatitis viruses in an effort to identify the knowledge gaps and aid the prevention and control of poultry viral hepatitis. Avian HEV is an Orthohepevirus B in the family Hepeviridae that naturally infects chickens and consists of three distinct genotypes worldwide. Avian HEV is associated with hepatitis-splenomegaly syndrome or big liver and spleen disease in chickens, although the majority of the infected birds are subclinical. Avihepadnaviruses in the family of Hepadnaviridae have been isolated from ducks, snow geese, white storks, grey herons, cranes, and parrots. DHBV evolved with the host as a noncytopathic form without clinical signs and rarely progressed to chronicity. The outcome for DHBV infection varies by the host's ability to elicit an immune response and is dose and age dependent in ducks, thus mimicking the pathogenesis of human hepatitis B virus (HBV) infections and providing an excellent animal model for human HBV. DHAV is a picornavirus that causes a highly contagious virus infection in ducks with up to 100% flock mortality in ducklings under 6 wk of age, while older birds remain unaffected. The high morbidity and mortality has an economic impact on intensive duck production farming. Duck hepatitis virus Types 2 and 3 are astroviruses in the family of Astroviridae with similarity phylogenetically to turkey astroviruses, implicating the potential for cross-species infections between strains. Duck astrovirus (DAstV) causes acute, fatal infections in ducklings with a rapid decline within 1-2 hr and clinical and pathologic signs virtually indistinguishable from DHAV. DAstV-1 has only been recognized in the United Kingdom and recently in China, while DAstV-2 has been reported in ducks in the United States. FAdV, the causative agent of inclusion body hepatitis, is a Group I avian adenovirus in the genus Aviadenovirus. The affected birds have a swollen, friable, and discolored liver, sometimes with necrotic or hemorrhagic foci. Histologic lesions include multifocal necrosis of hepatocytes and acute hepatitis with intranuclear inclusion bodies in the nuclei of the hepatocytes. THV is a picornavirus that is likely the causative agent of turkey viral hepatitis. Currently there are more questions than answers about THV, and the pathogenesis and clinical impacts remain largely unknown. Future research in viral hepatic diseases of poultry is warranted to develop specific diagnostic assays, identify suitable cell culture systems for virus propagation, and develop effective vaccines.
Collapse
Affiliation(s)
- Danielle M Yugo
- A Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061-0913
| | - Ruediger Hauck
- B Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - H L Shivaprasad
- C California Animal Health and Food Safety Laboratory System, University of California-Davis, Tulare, CA 93274
| | - Xiang-Jin Meng
- A Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061-0913
| |
Collapse
|
11
|
Tang C, Lan D, Zhang H, Ma J, Yue H. Transcriptome analysis of duck liver and identification of differentially expressed transcripts in response to duck hepatitis A virus genotype C infection. PLoS One 2013; 8:e71051. [PMID: 23923051 PMCID: PMC3726580 DOI: 10.1371/journal.pone.0071051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 06/26/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Duck is an economically important poultry and animal model for human viral hepatitis B. However, the molecular mechanisms underlying host-virus interaction remain unclear because of limited information on the duck genome. This study aims to characterize the duck normal liver transcriptome and to identify the differentially expressed transcripts at 24 h after duck hepatitis A virus genotype C (DHAV-C) infection using Illumina-Solexa sequencing. RESULTS After removal of low-quality sequences and assembly, a total of 52,757 unigenes was obtained from the normal liver group. Further blast analysis showed that 18,918 unigenes successfully matched the known genes in the database. GO analysis revealed that 25,116 unigenes took part in 61 categories of biological processes, cellular components, and molecular functions. Among the 25 clusters of orthologous group categories (COG), the cluster for "General function prediction only" represented the largest group, followed by "Transcription" and "Replication, recombination, and repair." KEGG analysis showed that 17,628 unigenes were involved in 301 pathways. Through comparison of normal and infected transcriptome data, we identified 20 significantly differentially expressed unigenes, which were further confirmed by real-time polymerase chain reaction. Of the 20 unigenes, nine matched the known genes in the database, including three up-regulated genes (virus replicase polyprotein, LRRC3B, and PCK1) and six down-regulated genes (CRP, AICL-like 2, L1CAM, CYB26A1, CHAC1, and ADAM32). The remaining 11 novel unigenes that did not match any known genes in the database may provide a basis for the discovery of new transcripts associated with infection. CONCLUSION This study provided a gene expression pattern for normal duck liver and for the previously unrecognized changes in gene transcription that are altered during DHAV-C infection. Our data revealed useful information for future studies on the duck genome and provided new insights into the molecular mechanism of host-DHAV-C interaction.
Collapse
Affiliation(s)
- Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Daoliang Lan
- College of Tibetan Plateau Research, Southwest University for Nationalities, Chengdu, China
| | - Huanrong Zhang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Jing Ma
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
- * E-mail:
| |
Collapse
|