1
|
Dehgany-Asl S, Allymehr M, Talebi A, Yosefi O, Allahyari E. Monitoring of aquatic birds and surveillance of avian influenza and Newcastle disease of waterfowls at the National Park of Urmia Lake. Vet Med Sci 2022; 8:2016-2031. [PMID: 35763835 PMCID: PMC9514460 DOI: 10.1002/vms3.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Urmia lake, as a national park, is one of the most valuable aquatic ecosystems in the Middle East and quatitative and qualitative changes in Urmia lake water have a great impact on its ecological performance and in the region. OBJECTIVES This project was designed to study the effects of the extent of Urmia lake water surface area on the area size and on the number of aquatic birds of the six selected habitats in 2011-2019. The presence of avian influenza (AI) and Newcastle disease (ND) viruses in migratory aquatic birds together with their impacts on poultry farms as well as on rural birds was also under surveillance in 2018-2019. METHODS Changes of Urmia lake and its impacts on area size of the six selected birds habitats were monitored by GIS. The small monitoring program with circular plot point counts was used for counting of the number of birds of the six selected habitats. At least, 100 samples (oropharyngeal and cloacal swabs) were collected. each sample was placed in a sterile plastic tube containg transport media and assigned with an number and store untill used. Reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR test were used for detection of AI and ND viruses in the samples. RESULTS The results revealed that changes in the water surface area of Urmia lake had a gsignificat impacts on area size and the number of aquatic birds of the six selected habitats. The surveillance results showed that 5% of the samples were AIV positvie while 25% of the samples were pasitive for NDV including 20% for non-virulent NDV (lNDV) and 5% for virulent NDV (vNDV) strains. CONCLUSION This study showed that fluctuation of Urmia lake's water surface area influenced (p < 0.05) the area size of the six selected aquatic birds' habitats and had a great impacts on the number of the migratory birds. Detection of AIV and vNDV emphesises that the seasonal migratory waterfowls spread AI and vND viruses to the ponds and estuaries as well as to the rural birds and industrialised poultry units around the Urmia lake. Potential public health treats were also discussed.
Collapse
Affiliation(s)
- Saied Dehgany-Asl
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, West Azerbaijan Province, Urmia, Iran
| | - Manoochehr Allymehr
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, West Azerbaijan Province, Urmia, Iran
| | - Alireza Talebi
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, West Azerbaijan Province, Urmia, Iran
| | - Omid Yosefi
- Division of Wildlife, General Department of Environment, West Azerbaijan Province, Urmia, Iran
| | - Esmaeel Allahyari
- Department of Health and Management of Poultry Diseases, Iran Veterinary Organization, West Azerbaijan Province, Urmia, Iran
| |
Collapse
|
2
|
Kabir H, Hakim H, Alizada MN, Hasan A, Miyaoka Y, Yamaguchi M, Shoham D, Takehara K. Isolation, Identification, and Molecular Characterization of Newcastle Disease Virus from Field Outbreaks in Chickens in Afghanistan. Avian Dis 2022; 66:176-180. [PMID: 35723930 DOI: 10.1637/aviandiseases-d-22-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/08/2022] [Indexed: 11/05/2022]
Abstract
Newcastle disease viruses (NDVs) in Afghanistan were isolated from three chicken farms and identified using a hemagglutination test and reverse transcription-polymerase chain reaction assay. Three isolates from each farm were sequenced to characterize the part of their fusion protein gene around the cleavage site. The characteristics of the fusion protein genes of the three isolates shown by phylogenic analysis indicated that the isolates were velogenic, belonged to the class II subgenotype VII 1.1, and were closely related to an identified Chinese NDV isolate. To our knowledge, this is the first time that NDV isolates from Afghanistan have been partially sequenced.
Collapse
Affiliation(s)
- Humayun Kabir
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hakimullah Hakim
- Laboratory of Microbiology, Department of Paraclinic, Faculty of Veterinary Sciences, Kabul University, Jamal Mina, Kabul 1006, Afghanistan
| | - Mohammad Naiem Alizada
- Laboratory of Microbiology, Department of Paraclinic, Faculty of Veterinary Sciences, Kabul University, Jamal Mina, Kabul 1006, Afghanistan
| | - Amirul Hasan
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yu Miyaoka
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makiko Yamaguchi
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Dany Shoham
- Bar-Ilan University, Begin-Sadat Center for Strategic Studies, Ramat Gan, 5290002, Israel
| | - Kazuaki Takehara
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan, .,Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
3
|
Putri DD, Poetri ON, Candra AA, Soejoedono RD. Production of hyperimmune serum against genotype VII Newcastle disease virus in rabbits with several applications. J Adv Vet Anim Res 2022; 9:211-220. [PMID: 35891669 PMCID: PMC9298101 DOI: 10.5455/javar.2022.i586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/03/2022] Open
Abstract
Objective This study aimed to produce hyperimmune serum against genotype VII Newcastle disease virus (NDV) with several applications. Materials and Methods Production of hyperimmune serum against genotype VII NDV was performed on eight New Zealand white rabbits divided into four groups. Rabbits were immunized three times on the 1st day, the 14th day, and the 30th day. Blood sampling was carried out on the 8th day after the third immunization. Results All groups showed the same pattern of hemagglutination inhibition (HI) titer results. HI titers would peak on the 5th or the 9th day after the second immunization, then decrease until the 3rd day after the third immunization, and increase again on the 5th day after the third immunization. Rabbits immunized intravenously showed higher HI titers than the other groups. These results indicate that the intravenous route for hyperimmune serum production against genotype VII Newcastle disease virus greatly affects the immune response result. Conclusions The production of hyperimmune serum by intravenous immunization three times was able to produce the highest titer of 210 at 38 days. The agar gel precipitation test and the Western blot assay showed that the hyperimmune serum was specific for the Newcastle disease antigen.
Collapse
Affiliation(s)
- Dwi Desmiyeni Putri
- Department of Animal Husbandry, Politeknik Negeri Lampung, Lampung, Indonesia
| | - Okti Nadia Poetri
- Department of Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, West Java, Indonesia
| | - Agung Adi Candra
- Department of Animal Husbandry, Politeknik Negeri Lampung, Lampung, Indonesia
| | - Retno Damajanti Soejoedono
- Department of Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, West Java, Indonesia
| |
Collapse
|
4
|
Bansal N, Singh R, Chaudhary D, Mahajan NK, Joshi VG, Maan S, Ravishankar C, Sahoo N, Mor SK, Radzio-Basu J, Kapur V, Jindal N, Goyal SM. Prevalence of Newcastle Disease Virus in Wild and Migratory Birds in Haryana, India. Avian Dis 2022; 66:141-147. [PMID: 35510471 DOI: 10.1637/aviandiseases-d-21-00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/20/2022] [Indexed: 11/05/2022]
Abstract
Newcastle disease virus (NDV) can infect approximately 250 avian species and causes highly contagious Newcastle disease (ND) in domestic poultry, leading to huge economic losses. There are three different pathotypes of NDV, i.e., lentogenic, mesogenic, and velogenic. Wild resident (wild) and migratory birds are natural reservoirs of NDV and are believed to play a key role in transmitting the virus to domestic poultry. The present study was conducted to determine the prevalence of NDV in wild and migratory birds in the state of Haryana, India, during two migratory seasons (2018-19 and 2019-20). In total 1379 samples (1368 choanal swabs and 11 tissue samples) were collected from live (n = 1368) or dead birds (n = 4) belonging to 53 different avian species. These samples belonged to apparently healthy (n = 1338), sick (n = 30), and dead (n = 4) birds. All samples were tested for NDV by real-time reverse transcription-PCR using M gene specific primers and probe. Of the 1379 samples, 23 samples from wild birds [Columba livia domestica (n = 12, 52.17%), Pavo cristatus (n = 9, 39.13%), and Psittaciformes (n = 2, 8.69%)] were found positive for NDV. Only one of the 23 samples (from P. cristatus) was positive for F gene, indicating it to be a mesogenic/velogenic strain. These results indicate that both lentogenic and velogenic strains of NDV are circulating in wild birds in Haryana and that further studies are needed to characterize NDV strains from wild/migratory birds and domestic poultry to determine the extent of virus transmission among these populations. This study considers the disease transmission risk from domestic pigeons and parrots to commercial poultry and vice versa, and the results emphasize the need for strict biosecurity strategies to protect commercial poultry in the region.
Collapse
Affiliation(s)
- Nitish Bansal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Renu Singh
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Deepika Chaudhary
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nand K Mahajan
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Sushila Maan
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Chintu Ravishankar
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Kerala, India
| | - Niranjana Sahoo
- College of Veterinary Science and Animal Husbandry, Orissa University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Sunil K Mor
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN 55455
| | - Jessica Radzio-Basu
- The Huck Institute of the Life Sciences, The Pennsylvania State University, State College, PA 16801.,Department of Animal Science, The Pennsylvania State University, State College, PA 16801
| | - Vivek Kapur
- The Huck Institute of the Life Sciences, The Pennsylvania State University, State College, PA 16801.,Department of Animal Science, The Pennsylvania State University, State College, PA 16801
| | - Naresh Jindal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India,
| | - Sagar M Goyal
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN 55455
| |
Collapse
|
5
|
Worku T, Dandecha M, Shegu D, Aliy A, Negessu D. Isolation and Molecular Detection of Newcastle Disease Virus from Field Outbreaks in Chickens in Central Ethiopia. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2022; 13:65-73. [PMID: 35469130 PMCID: PMC9034857 DOI: 10.2147/vmrr.s352727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
Abstract
Background Newcastle disease is a major viral disease of poultry. The virus is a major problem for chickens in Ethiopia and there is a scarcity of updated information on the virological and molecular status of confirmation of Newcastle disease outbreak cases in the country. Methods Newcastle disease outbreaks were investigated from February 2021 to October 2021 in central Ethiopia to isolate and detect the virus by cell culture and reverse transcriptase PCR. A total of 44 pooled tissue specimens were sampled from sick and recently dead chickens showing typical clinical signs of Newcastle disease. Virus isolation were performed using DF-1 cells and detection of the virus was done by real-time PCR. Results Out of 44 collected tissue samples, 38.63% (17/44) were positive on DF-1 cells. The result shows 17 of the clinically sick and dead chickens were positive for the virus by reverse transcriptase polymerase chain reaction. Based on the sample type, 54.54% (6/11) of the brain samples, 36.36% (4/11) of the intestines, 54.54% (6/11) of lung and trachea, 9% (1/11) of pooled liver, kidney, heart, and spleen samples were positive. Viruses were isolated in the proportions 37.5% (6/16), 25% (2/8), 50% (2/4), 25% (1/4), 50% (2/4) and 50% (4/8) from Sebeta, Bishoftu, Sululta, Nifas Silk, Kolfe and Yeka, respectively. Conclusion This study showed that Newcastle disease is a major viral disease causing death of chickens in the study area. Therefore, any control approach should focus on the appropriate characterization of the virus strain causing the outbreak in the study area.
Collapse
Affiliation(s)
- Takele Worku
- Department of Virology and Molecular Biology, National Animal Health Diagnostic and Investigation Center, Sebeta, Oromia, Ethiopia
| | - Morka Dandecha
- Department of Veterinary Laboratory Technology, Ambo University, Ambo, Oromia, Ethiopia
| | - Deraje Shegu
- Department of Virology and Molecular Biology, National Animal Health Diagnostic and Investigation Center, Sebeta, Oromia, Ethiopia
| | - Abde Aliy
- Department of Virology and Molecular Biology, National Animal Health Diagnostic and Investigation Center, Sebeta, Oromia, Ethiopia
| | - Demessa Negessu
- Department of Virology and Molecular Biology, National Animal Health Diagnostic and Investigation Center, Sebeta, Oromia, Ethiopia
| |
Collapse
|
6
|
Puro K, Sen A. Newcastle Disease in Backyard Poultry Rearing in the Northeastern States of India: Challenges and Control Strategies. Front Vet Sci 2022; 9:799813. [PMID: 35464373 PMCID: PMC9021565 DOI: 10.3389/fvets.2022.799813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
|
7
|
Zhang J, Ji Y, Wang Z, Jia Y, Zhu Q. Effective improvements to the live-attenuated Newcastle disease virus vaccine by polyethylenimine-based biomimetic silicification. Vaccine 2022; 40:886-896. [PMID: 34991927 DOI: 10.1016/j.vaccine.2021.12.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Live and killed vaccines impart a significant role in preventing of Newcastle disease (ND) in China. Vaccine efficacy could be ameliorated by improving vaccine-induced cellular immunity and antibody persistency. Previous studies substantiated the potency of silicon dioxide (SiO2) in the control-release of drugs and as a vaccine adjuvant, and polyethylenimine (PEI) merits as a mucosal adjuvanticity with electro-positivity. The present study employed SiO2 and PEI to prepare biomimetic silicon mineralized nanoparticle G7M@SiO2-PEI and microparticle (SiO2 + PEI)@G7M vaccines of G7M, a candidate for live attenuated vaccine of genotype VII Newcastle disease virus (NDV). The zeta potential experiment confirmed the significant increase in the average zeta potential of the nanoparticle G7M@SiO2-PEI and microparticle (SiO2 + PEI)@G7M relative to G7M before mineralization. The results of RT-qPCR revealed more than 99% mineralization efficiency of the G7M@SiO2-PEI and (SiO2 + PEI)@G7M. The morphology detected by transmission electron microscopy reported that the diameters of G7M@SiO2-PEI were similar to those of G7M, while for (SiO2 + PEI)@G7M, it was about five times larger than that of G7M. Silicon was detected on the surface of both mineralization particles, except for G7M, as observed from the elemental distribution detected by elemental mapping and energy dispersive X-ray spectrogram. Indirect immunofluorescence assays validated that mineralization virus have replicated ability in BHK-21F cells. In vivo experiments revealed higher than 5.50 log2 of antibody in nanoparticles G7M@SiO2-PEI group until 10-week post-vaccination, and significant proliferation of antigen-specific CD3+CD4+ in nanoparticles G7M@SiO2-PEI immunized group corroborated improved cellular immune responses. Vaccines provided full protection to the immunized chickens, whereas all the chickens receiving mock immunizations succumbed to the disease. Overall, our study concluded the efficacy of biomimetic mineralization of live attenuated vaccine in nanoparticles to improve humoral and cellular immune responses.
Collapse
Affiliation(s)
- Jinjin Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yanhong Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| |
Collapse
|
8
|
Development, Biological Characterization, and Immunological Evaluation of Virosome Vaccine against Newcastle Disease in Pakistan. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8879277. [PMID: 33575353 PMCID: PMC7864732 DOI: 10.1155/2021/8879277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 11/24/2022]
Abstract
Newcastle disease (ND) is a highly fatal, infectious, viral disease, and despite immunization with live and inactivated vaccines, the disease is still endemic, causing heavy morbidity and mortality leading to huge economic losses to the poultry industry in Pakistan. Therefore, the present study was aimed for the first time in the country at using novel virosomal technology to develop the ND vaccine using an indigenous highly virulent strain of the virus. ND virosome was prepared using Triton X-100, and SM2 Bio-Beads were used to remove the detergent and reconstitute the viral membrane into virosome. Confirmation was done by transmission electron microscopy and protein analysis by SDS-PAGE. In vitro cell adhesion property was observed by incorporating green fluorescent protein (GFP), producing plasmid into virosome and in vitro cell culture assay. Sterility, safety, and stability of the vaccine were tested before in vivo evaluation of immunogenicity and challenge protection study in commercial broiler. The virosome vaccine was administered (30 μg/bird) at days 7 and 14 through the intranasal route in comparison with commercially available live and inactivated ND vaccines. Results revealed significantly high (p < 0.05) and clinically protective hemagglutination inhibition (HI) antibody titers at 7, 14, 21, and 28 days postimmunization with the virosome vaccine in comparison to the negative control. The GMTs were comparable to live and inactivated vaccines with nonsignificant (p > 0.05) differences throughout the experiment. Antibody levels increased in all vaccinated groups gradually from the 7th day and were maximum at 28th-day postvaccination. In the virosome-administered group, GMT was 83.18 and 77.62 at 21st and 28th-days postvaccination, respectively. Challenge revealed 100%, 90%, and 80% protection in virosome, live, and inactivated vaccinated groups, respectively. Under given experimental conditions, we can conclude that ND virosome vaccine prepared from the indigenous virus was found to be safe and immunogenic.
Collapse
|
9
|
Esmaeelzadeh Dizaji R, Ghalyanchilangeroudi A, Vasfi Marandi M, Hosseini H, Karimi V, Ziafatikafi Z, Molouki A, Fallah Mehrabadi MH. Complete genome sequence of a subgenotype XXI.1.1 pigeon paramyxovirus type 1 virus (PPMV‑1) isolated from Iran in 2018 and phylogenetic analysis of a possible novel, but unassigned, PPMV-1 group isolated in 2014. Comp Immunol Microbiol Infect Dis 2020; 73:101565. [PMID: 33126169 DOI: 10.1016/j.cimid.2020.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 11/30/2022]
Abstract
Newcastle disease (ND) is one of the most serious infectious and contagious viral diseases in avian species. Recently, several ND outbreaks in pigeon caused by pigeon paramyxovirus serotype-1 (PPMV-1) have been reported from Iran, but unfortunately, phylogenetic studies have been mostly conducted on partial sequence of NDV fusion (F) gene. In addition, a complete genome data of Iranian PPMV-1 strains are not available. In the present study, a PPMV-1, named Avian avulavirus 1/pigeon/Iran/UT-EGV/2018, isolated from an infected pigeon, was subjected to whole-genome sequencing. The isolate showed an MDT of 74 h, thus categorizing it as mesogenic. The phylogenetic analysis based on the F gene sequence revealed the isolate belongs to XXI.1.1 subgenotype (min 0.9 % and max 3 %). To our knowledge, our study is the first study to publish the complete genome of a PPMV-1 from Iran. According to BLAST results, the whole genome of UT-EGV had high homology with some Russian, Egyptian and Ukrainian strains (the highest was 96.55 %). Additionally, we conducted a phylogenetic analysis on five PPMV-1 that we isolated in 2014 to find that they may belong to a completely unreported subgenotype (6 % distance when compared as a group). The information obtained from this study can be useful in preventive measures, including constructing an effective vaccine against PPMV-1 in Iran.
Collapse
Affiliation(s)
- Reza Esmaeelzadeh Dizaji
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Vasfi Marandi
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Hossein Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Vahid Karimi
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Ziafatikafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Aidin Molouki
- Department of Poultry Diseases, RAZI Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Mohammad Hossein Fallah Mehrabadi
- Department of Poultry Diseases, RAZI Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
10
|
RETRACTED ARTICLE: Emergence of new sub-genotypes of Newcastle disease virus in Pakistan. WORLD POULTRY SCI J 2017. [DOI: 10.1017/s0043933917000411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Putri DD, Handharyani E, Soejoedono RD, Setiyono A, Mayasari NLPI, Poetri ON. Pathotypic characterization of Newcastle disease virus isolated from vaccinated chicken in West Java, Indonesia. Vet World 2017; 10:438-444. [PMID: 28507416 PMCID: PMC5422248 DOI: 10.14202/vetworld.2017.438-444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
Aim: This research was conducted to differentiate and characterize eight Newcastle disease virus (NDV) isolates collected from vaccinated chicken at commercial flocks in West Java, Indonesia, in 2011, 2014 and 2015 by pathotype specific primers. Materials and Methods: A total of eight NDV isolates collected from clinical outbreaks among commercial vaccinated flocks in West Java, Indonesia, in 2011, 2014, and 2015 were used in this study. Reverse transcription-polymerase chain reaction was used to detect and differentiate virulence of NDV strains, using three sets of primers targeting their M and F gene. First primers were universal primers to detect NDV targeting matrix (M) gene. Other two sets of primers were specific for the fusion (F) gene cleavage site sequence of virulent and avirulent NDV strains. Results: Our results showed that three isolates belong to NDV virulent strains, and other five isolates belong to NDV avirulent strains. The nucleotide sequence of the F protein cleavage site showed 112K/R-R-Q/R-K-R/G-F117 on NDV virulent strains and 112G-K/R-Q-G-R-L117 on NDV avirulent strain. Conclusion: Result from the current study suggested that NDV virulent strain were circulating among vaccinated chickens in West Java, Indonesia; this might possess a risk of causing ND outbreaks and causing economic losses within the poultry industry.
Collapse
Affiliation(s)
- Dwi Desmiyeni Putri
- Study Program of Animal Biomedical Science, IPB Graduate School, Bogor Agricultural University, Bogor, Indonesia.,Study Program of Animal Husbandry, Department of Animal Husbandry, State Polytechnic of Lampung, Lampung, Indonesia
| | - Ekowati Handharyani
- Department of Veterinary Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Retno Damajanti Soejoedono
- Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Agus Setiyono
- Department of Veterinary Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Ni Luh Putu Ika Mayasari
- Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Okti Nadia Poetri
- Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| |
Collapse
|
12
|
Assessment of Immune Response Against Newcastle Disease Oral Pellet Vaccine in Desi Chicken by ELISA Test. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2016. [DOI: 10.22207/jpam.10.4.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Rezaei Far A, Peighambari SM, Pourbakhsh SA, Ashtari A, Soltani M. Co-circulation of genetically distinct groups of avian paramyxovirus type 1 in pigeon Newcastle disease in Iran. Avian Pathol 2016; 46:36-43. [PMID: 27314285 DOI: 10.1080/03079457.2016.1203068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pigeons are considered as one of the major natural reservoirs in the epidemiology of Newcastle disease (ND). In this study, the partial sequence of fusion protein gene of 17 pigeon-origin ND viruses (NDVs) isolated during 2012-2013 in Iran was analysed. Since the studied isolates showed F0 protein cleavage sites compatible with velogenic NDVs, all were considered as virulent NDVs. Two isolates carried 112RRQKRF117 as the cleavage site motif, whereas the rest demonstrated 112KRQKRF117 motif which just recently has been reported among Iranian virulent NDVs. Phylogenetic analysis divided all these diverse isolates in two distinct clusters within class II genotype VI. Based on the partial fusion protein gene sequence, 15 out of 17 isolates showed the highest genetic identity to subgenotype VIb/2 and the other two isolates were placed in a distinct genetic group of genotype VI. Based on recent findings, at least two different sublineages of genotype VI are causing the ND outbreaks in the pigeon population and are circulating simultaneously along with virulent NDVs of genotype VII in various species in Iran. The continuing circulation of a diverse group of virulent NDVs as an enzootic in widespread species such as pigeon can cause outbreaks in commercial poultry flocks and also failure in controlling programmes. Therefore, the constant monitoring and awareness of the virus characteristics should be considered in controlling programmes against ND in Iran.
Collapse
Affiliation(s)
- A Rezaei Far
- a Department of Avian Diseases, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - S M Peighambari
- a Department of Avian Diseases, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - S A Pourbakhsh
- b Avian Diseases Research and Diagnosis Department , Razi Vaccine and Serum Research Institute , Alborz , Iran
| | - A Ashtari
- b Avian Diseases Research and Diagnosis Department , Razi Vaccine and Serum Research Institute , Alborz , Iran
| | - M Soltani
- a Department of Avian Diseases, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| |
Collapse
|
14
|
Zeynalova S, Guliyev F, Vatani M, Abbasov B. Biosurveillance of avian influenza and Newcastle disease viruses in the Barda region of Azerbaijan using real time RT-PCR and hemagglutination inhibition. Front Microbiol 2015; 6:1128. [PMID: 26594200 PMCID: PMC4635216 DOI: 10.3389/fmicb.2015.01128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
The Azerbaijan State Veterinary Control Service (SVCS) has conducted active serological surveillance for avian influenza (AI) in poultry since 2006, when the first outbreak of AI H5N1 occurred in Azerbaijan. Samples are collected from September to May annually and tested using a hemagglutination inhibition (HI) assay to detect antibodies against H5 AI viruses. HI testing is also performed for Newcastle disease virus (NDV) upon request, but since this method cannot distinguish between natural infections and immune responses to vaccination, all positive results require follow-up epidemiological investigations. Furthermore, blood collection for the surveillance program is time-intensive and can be stressful to birds. In order to improve the national surveillance program, alternative sampling and testing methodologies were applied among a population of birds in the Barda region and compared with results of the national surveillance program. Tracheal and cloacal swabs were collected instead of blood. Rather than testing individual samples, RNA was pooled to conserve resources and time, and pools were tested by real-time reverse transcription polymerase chain reaction (rRT-PCR). Environmental sampling at a live bird market was also introduced as another surveillance mechanism. A total of 1,030 swabs were collected, comprising tracheal, and cloacal samples from 441 birds and 148 environmental surface samples from farms or the live bird market. During the same time, 3,890 blood samples were collected nationally for the surveillance program; 400 of these samples originated in the Barda region. Birds sampled for rRT-PCR were likely different than those tested as part of national surveillance. All swab samples tested negative by rRT-PCR for both AI and NDV. All blood samples tested negative for H5 by HI, while 6.2% of all samples and 5% of the Barda samples tested positive for exposure to NDV. Follow-up investigations found that positive samples were from birds vaccinated in the previous month. This study demonstrated that taking swabs was quicker and less invasive than blood collection. Results of rRT-PCR testing were similar to HI testing for H5 but also ruled out infection with all influenza type A viruses and not just H5. In addition, rRT-PCR testing was able to rule out active infections with NDV.
Collapse
Affiliation(s)
- Shalala Zeynalova
- Virology Department, Republican Veterinary Laboratory Baku, Azerbaijan
| | - Fizuli Guliyev
- Virology Department, Republican Veterinary Laboratory Baku, Azerbaijan
| | - Mahira Vatani
- Virology Department, Republican Veterinary Laboratory Baku, Azerbaijan
| | - Bahruz Abbasov
- Virology Department, Barda Zonal Veterinary Laboratory Baku, Azerbaijan
| |
Collapse
|
15
|
Sero-surveillance and risk factors for avian influenza and Newcastle disease virus in backyard poultry in Oman. Prev Vet Med 2015; 122:145-53. [DOI: 10.1016/j.prevetmed.2015.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 09/08/2015] [Accepted: 09/20/2015] [Indexed: 11/21/2022]
|