1
|
Shi K, Wu Y, Jiang X, Liu X, Du Y, Feng C, Li D. Transcriptome analysis reveals the pathogenesis of spontaneous tibial dyschondroplasia in broilers. Front Genet 2024; 15:1434532. [PMID: 39139824 PMCID: PMC11320418 DOI: 10.3389/fgene.2024.1434532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Tibial dyschondroplasia (TD) is a severe bone disease that affects fast-growing broiler chickens and causes economic loss. Despite previous studies, the regulatory mechanism of TD remains unclear and is thought to be primarily based on thiram induction, which may differ from that of naturally occurring diseases. To better understand TD, a digital X-ray machine was used in the present study to determine its incidence in four hundred yellow-feathered broiler chickens. The results showed that the incidence of TD was 22% after 6 weeks and gradually decreased after 8 and 10 weeks. The body weight of broilers with TD decreased significantly compared to that of NTD broilers. In addition, the length and density of the tibia were reduced after eight and 10 weeks, and the density of the tibia was reduced after 6 weeks compared with the NTD chickens. This study also examined tibial quality parameters from TD (n = 12) and NTD broilers (n = 12) and found that bone mineral content, bone mineral density, bone ash content, calcium content, and phosphorus content were significantly reduced in TD broilers. Transcriptome analysis revealed 849 differentially expressed genes (DEGs) in the growth plate between TD (n = 6) and NTD groups (n = 6). These genes were enriched in ECM-receptor interaction, cytokine-cytokine receptor interaction, calcium signaling pathway, and TGF-β signaling. Genes encoding the alpha chain of type XII collagen, that is, COL1A1, COL5A1, and COL8A1) were identified as critical in the regulatory network of TD. Gene set enrichment analysis (GSEA) revealed that the pathways of cartilage development, circulatory system development, and nervous system development were changed in the growth plates of TD birds. In the blood transcriptome, 12 DEGs were found in TD (n = 4) and NTD chickens (n = 4), and GSEA revealed that the pathways from TD broilers' blood related to the phagosome, linoleic acid metabolism, monoatomic ion homeostasis, and calcium ion transport were downregulated. This study provides a comprehensive understanding of TD, including its effects on tibial quality, tibial changes, and the circulatory system, along with identifying important genes that may lead to the development of TD.
Collapse
Affiliation(s)
- Kai Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Yongfu Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xusheng Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangping Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuesong Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dongfeng Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Wu X, Liu Y, Li Y, Tang Z, Li A, Zhang H. Molecular mechanism of thiram-induced abnormal chondrocyte proliferation via lncRNA MSTRG.74.1-BNIP3 axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105847. [PMID: 38685209 DOI: 10.1016/j.pestbp.2024.105847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 05/02/2024]
Abstract
Thiram, a widely used organic pesticide in agriculture, exhibits both bactericidal and insecticidal effects. However, prolonged exposure to thiram has been linked to bone deformities and cartilage damage, contributing to the development of tibial dyschondroplasia (TD) in broilers and posing a significant threat to global agricultural production. TD, a prevalent nutritional metabolic disease, manifests as clinical symptoms like unstable standing, claudication, and sluggish movement in affected broilers. In recent years, there has been growing recognition of the regulatory role of long non-coding RNA (lncRNA) in tibial cartilage formation among broilers through diverse signaling pathways. This study employs in vitro experimental models, growth performance analysis, and clinical observation to assess broilers' susceptibility to thiram pollution. Transcriptome sequencing analysis revealed a significant elevation in the expression of lncRNA MSTRG.74.1 in both the con group and the thiram-induced in vitro group. The results showed that lncRNA MSTRG.74.1 plays a pivotal role in influencing the proliferation and abnormal differentiation of chondrocytes. This regulation occurs through the negative modulation of apoptotic genes, including Bax, Cytc, Bcl2, Apaf1, and Caspase3, along with genes Atg5, Beclin1, LC3b, and protein p62. Moreover, the overexpression of lncRNA MSTRG.74.1 was found to regulate broiler chondrocyte development by upregulating BNIP3. In summary, this research sheds light on thiram-induced abnormal chondrocyte proliferation in TD broilers, emphasizing the significant regulatory role of the lncRNA MSTRG.74.1-BNIP3 axis, which will contribute to our understanding of the molecular mechanisms underlying TD development in broilers exposed to thiram.
Collapse
Affiliation(s)
- Xiaomei Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yingwei Liu
- Guangzhou National Laboratory, Guangzhou 510000, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Xu H, Jiang Y, Lu Y, Hu Z, Du R, Zhou Y, Liu Y, Zhao X, Tian Y, Yang C, Zhang Z, Qiu M, Wang Y. Thiram exposure induces tibial dyschondroplasia in broilers via the regulation effect of circ_003084/miR-130c-5p/BMPR1A crosstalk on chondrocyte proliferation and differentiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133071. [PMID: 38008051 DOI: 10.1016/j.jhazmat.2023.133071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Thiram, an agricultural insecticide, has been demonstrated to induce tibial dyschondroplasia (TD) in avian species. Circular RNA (circRNAs), a novel class of functional biological macromolecules characterized by their distinct circular structure, play crucial roles in various biological processes and diseases. Nevertheless, the precise regulatory mechanism underlying non-coding RNA involvement in thiram-induced broiler tibial chondrodysplasia remains elusive. In this study, we established a broiler model of thiram exposure for 10 days to assess TD and obtain a ceRNA network by RNA sequencing. By analyzing the differentially expressed circRNAs network, we id entify that circ_003084 was significantly upregulated in TD cartilage. Elevated circ_003084 inhibited TD chondrocytes proliferation and differentiation in vitro but promote apoptosis. Mechanistically, circ_003084 competitively binds to miR-130c-5p and prevents miR-130c-5p to decrease the level of BMPR1A, which upregulates the expression of apoptosis genes Caspase 3, Caspase 9, Bax and Bcl2, and finally facilitates cell apoptosis. Taken together, these findings imply that circ_003084/miR-130c-5p/BMPR1A interaction regulated TD chicken chondrocyte proliferation, apoptosis, and differentiation. This is the first work to reveal the mechanism of regulation of circRNA-related ceRNA on thiram-induced TD, offering a key reference for environmental toxicology.
Collapse
Affiliation(s)
- Hengyong Xu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuru Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxiang Lu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ranran Du
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxin Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoling Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaofu Tian
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Zengrong Zhang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Nawaz S, Kulyar MFEA, Mo Q, Yao W, Iqbal M, Li J. Homeostatic Regulation of Pro-Angiogenic and Anti-Angiogenic Proteins via Hedgehog, Notch Grid, and Ephrin Signaling in Tibial Dyschondroplasia. Animals (Basel) 2023; 13:3750. [PMID: 38136788 PMCID: PMC10740744 DOI: 10.3390/ani13243750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-β (TGF-β), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.
Collapse
Affiliation(s)
- Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| |
Collapse
|
5
|
Iqbal M, Waqas M, Mo Q, Shahzad M, Zeng Z, Qamar H, Mehmood K, Kulyar MFEA, Nawaz S, Li J. Baicalin inhibits apoptosis and enhances chondrocyte proliferation in thiram-induced tibial dyschondroplasia in chickens by regulating Bcl-2/Caspase-9 and Sox-9/Collagen-II expressions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115689. [PMID: 37992645 DOI: 10.1016/j.ecoenv.2023.115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Avian tibial dyschondroplasia (TD) is a skeletal disease affecting fast growing chickens, resulting in non-mineralized avascular cartilage. This metabolic disorder is characterized by lameness and reduced growth performance causing economic losses. The aim of this study was to investigate the protective effects of baicalin against TD caused by thiram exposure. A total of two hundred and forty (n = 240) one day-old broiler chickens were uniformly and randomly allocated into three different groups (n = 80) viz. control, TD, and baicalin groups. All chickens received standard feed, however, to induce TD, the TD and baicalin groups received thiram (tetramethylthiuram disulfide) at a rate of 50 mg/kg feed from days 4-7. The thiram induction in TD and baicalin groups resulted in lameness, high mortality, and enlarged growth-plate, poor production performance, reduction in ALP, GSH-Px, SOD, and T-AOC levels, and increased AST and ALT, and MDA levels. Furthermore, histopathological results showed less vascularization, and mRNA and protein expression levels of Sox-9, Col-II, and Bcl-2 showed significant downward trend, while caspase-9 displayed significant up-regulation in TD-affected chickens. After the TD induction, the baicalin group was orally administered with baicalin at a rate of 200 mg/kg from days 8-18. Baicalin administration increased the vascularization, and chondrocytes with intact nuclei, alleviated lameness, decreased GP size, increased productive capacity, and restored the liver antioxidant enzymes and serum biochemical levels. Furthermore, baicalin significantly up-regulated the gene and protein expressions of Sox-9, Col-II, and Bcl-2, and significantly down-regulated the expression of caspase-9 (p < 0.05). Therefore, the obtained results suggest that baicalin could be a possible choice in thiram toxicity alleviation by regulating apoptosis and chondrocyte proliferation in thiram-induced tibial dyschondroplasia.
Collapse
Affiliation(s)
- Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Poonch 12350, Azad Jammu and Kashmir, Pakistan
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Kulyar MFEA, Yao W, Mo Q, Ding Y, Zhang Y, Gao J, Li K, Pan H, Nawaz S, Shahzad M, Mehmood K, Iqbal M, Akhtar M, Bhutta ZA, Waqas M, Li J, Qi D. Regulatory Role of Apoptotic and Inflammasome Related Proteins and Their Possible Functional Aspect in Thiram Associated Tibial Dyschondroplasia of Poultry. Animals (Basel) 2022; 12:ani12162028. [PMID: 36009620 PMCID: PMC9404426 DOI: 10.3390/ani12162028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tibial dyschondroplasia debilities apoptotic and inflammasomal conditions that can further destroy chondrocytes. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, e.g., interleukin-1β (IL-1β) and IL-18. Moreover, there is mounting evidence that many of the signaling molecules that govern programmed cell death also affect inflammasome activation in a cell-intrinsic way. During the last decade, apoptotic functions have been described for signaling molecules involving inflammatory responses and cell death pathways. Considering these exceptional developments in the knowledge of processes, this review gives a glimpse of the significance of these two pathways and their connected proteins in tibial dyschondroplasia. The current review deeply elaborates on the elevated level of signaling mediators of mitochondrial-mediated apoptosis and the inflammasome. Although investigating these pathways’ mechanisms has made significant progress, this review identifies areas where more study is especially required. It might lead to developing innovative therapeutics for tibial dyschondroplasia and other associated bone disorders, e.g., osteoporosis and osteoarthritis, where apoptosis and inflammasome are the significant pathways.
Collapse
Affiliation(s)
- Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jindong Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeeshan Ahmad Bhutta
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Muhammad Waqas
- Faculty of Veterinary & Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
- Correspondence: (J.L.); (D.Q.)
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (J.L.); (D.Q.)
| |
Collapse
|
7
|
Liu K, Li Y, Iqbal M, Tang Z, Zhang H. Thiram exposure in environment: A critical review on cytotoxicity. CHEMOSPHERE 2022; 295:133928. [PMID: 35149006 DOI: 10.1016/j.chemosphere.2022.133928] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Thiram is used in large quantities in agriculture and may contaminate the environment by improper handling or storage in chemical plants and warehouses. A review of the literature has shown that thiram can affect different organs in animals and its toxic mechanisms can be elucidated in more detail at molecular level. We have summarized several impacts of thiram on animals: the effects of the perspectives of oxidative stress, mitochondrial damage, autophagy, apoptosis, and the IHH/PTHrP pathway on regulating abnormal skeletal development in particular tibial dyschondroplasia and kyphosis; angiogenesis inhibition was investigated from the perspective of angiogenesis factor inhibition, PI3K/AKT signaling pathway and CD147; the inhibition effect of thiram on fibroblasts and erythrocytes via the perspective of oxidative stress, mitochondrial damage and inhibition of growth factors in animal skin fibroblasts and erythrocytes; studied fertilized egg size, reduced fertility, neurodegeneration, and immune damage from the perspectives of CYP51 inhibition and dopamine-b-hydroxylase inhibition in the reproductive system, vitamin D deficiency in the nervous system, and inflammatory damage in the immune system; embryonic dysplasia in terms of thyroid hormone repression in animal embryonic development and repression of the SOX9a transcription factor. The elucidation of the mechanisms of toxicity of thiram on various organs of animals at molecular level will enable a more detailed understanding of the mechanisms of toxicity of thiram in animals and will facilitate the exploration of the treatment of thiram poisoning at molecular level.
Collapse
Affiliation(s)
- Kai Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Ding Y, Yao W, Fakhar-E-Alam Kulyar M, Mo Q, Pan H, Zhang Y, Ma B, He Y, Zhang M, Hong J, Waqas M, Li J. Taurine is an effective therapy against thiram induced tibial dyschondroplasia via HIF-1α/VEGFA and β-catenin/ GSK-3β pathways in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112981. [PMID: 34781124 DOI: 10.1016/j.ecoenv.2021.112981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Thiram causes tibial dyschondroplasia in broilers, leading to a significant economic loss in the poultry industry. Our study explored the effects of taurine in thiram induced tibial dyschondroplasia (TD) through in vivo and in vitro approches. In in vivo study, thiram resulted in lameness disorder, low production parameters ALP, ACP, and a high level of NOS. While, the taurine exhibited promising effect by reducing lameness, increasing ALP, ACP levels, and significantly lowering NOS level with the restoration of the growth plate. In in vitro study, thiram caused distortion and disintegration of chondrocytes. The CCK-8 technique revealed the lower cell activity in TD as compared with the treatment group. Even, the treatment and taurine groups had higher cell activity than control group. Also, the chondrocyte morphology progressively reverted to normal after taurine treatment. It might effectively decreased the symptoms of TD in broilers and their production performance. Further research found that the taurine effectively improved chondrocytes' cell viability and recovered lameness disorder by regulation of HIF-1α, VEGFA, and Wnt/β-catenin signaling pathways. In summary, these results indicate that taurine has a protective effect on thiram-induced broilers and it can enhance the growth activity by directly affecting the development of chondrocytes and blood vessels.
Collapse
Affiliation(s)
- Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bingjie Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ya He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mengdi Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiajia Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
9
|
Jahejo AR, Jia FJ, Raza SHA, Shah MA, Yin JJ, Ahsan A, Waqas M, Niu S, Ning GB, Zhang D, Khan A, Tian WX. Screening of toll-like receptor signaling pathway-related genes and the response of recombinant glutathione S-transferase A3 protein to thiram induced apoptosis in chicken erythrocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103831. [PMID: 32818608 DOI: 10.1016/j.dci.2020.103831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The expression of genes related to the Toll-like receptors (TLRs) signaling pathway were determined. Group A, B and C fed with basal diet and group D, E and F induced TD by feeding a basal diet containing 100 mg·kg-1 thiram. rGSTA3 protein was injected at 20 μg·kg-1 in group B, E and at 50 μg·kg-1 in C, F. Results suggested that lameness and death of chondrocytes were significant on day 14. TLRs signaling pathway related genes were screened based on the transcriptome enrichment, and validated on qPCR. IL-7, TLR2, 3, 4, 5, 7, 15, MyD88, MHC-II, MDA5 and TRAF6 were significantly (p < 0.05) expressed in group E and F as compared to group D on day 14 and 23. IL-7, MHCII, TRAF6, TLR3, TLR5, TLR7, and TLR15 determined insignificant in group D compared to group A on day 23. TD occur in an early phase and alleviated in the later period. rGSTA3 protein can prevent apoptosis and repair degraded chondrocytes.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Fa-Jie Jia
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | | | - Mujahid Ali Shah
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Jiao-Jiao Yin
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Anam Ahsan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Muhammad Waqas
- Faculty of Veterinary and Animal Sciences, University of the Poonch, Rawalakot, District Poonch, 12350, Azad Jammu & Kashmir, Pakistan
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Guan-Bao Ning
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Ajab Khan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China.
| |
Collapse
|
10
|
Jahejo AR, Tian WX. Cellular, molecular and genetical overview of avian tibial dyschondroplasia. Res Vet Sci 2020; 135:569-579. [PMID: 33066991 DOI: 10.1016/j.rvsc.2020.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
Tibial dyschondroplasia (TD) is an intractable avian bone disease that causes severe poultry economic losses. The pathogenicity of TD is unknown. Therefore, TD disease has not been evacuated yet. Based on continuous research findings, we have gone through the molecular and cellular insight into the TD and proposed possible pathogenicity for future studies. Immunity and angiogenesis-related genes expressed in the erythrocytes of chicken, influenced the apoptosis of chicken chondrocytes to cause TD. TD could be defined as the irregular, unmineralized and un-vascularized mass of cartilage, which is caused by apoptosis, degeneration and insufficient blood supply at the site of the chicken growth plate. The failure of angiogenesis attributed improper nutrients supply to the chondrocytes; ultimately, bone development stopped, poor calcification of cartilage matrix, and apoptosis of chondrocytes occurred. Recent studies explore potential signaling pathways that regulated TD in broiler chickens, including parathyroid hormone-related peptide (PTHrP), transforming growth factor β (TGF- β)/bone morphogenic proteins (BMPs), and hypoxia-inducible factor (HIF). Several studies have reported many medicines to treat TD. However, recently, rGSTA3 protein (50 μg·kg-1) is considered the most proper TD treatment. The present review has summarized the molecular and cellular insight into the TD, which will help researchers in medicine development to evacuate TD completely.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wen Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China.
| |
Collapse
|
11
|
Treatment of tibial dyschondroplasia with traditional Chinese medicines: "Lesson and future directions". Poult Sci 2020; 99:6422-6433. [PMID: 33248557 PMCID: PMC7704743 DOI: 10.1016/j.psj.2020.08.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/14/2020] [Accepted: 08/15/2020] [Indexed: 12/15/2022] Open
Abstract
Tibial dyschondroplasia (TD) is a metabolic tibiotarsal bone disease in rapidly growing birds throughout the world, which is characterized by gait disorders, reduced growth, and in an unrecoverable lameness in many cases. The short production cycle in chickens, long metabolism cycle in most of the drugs with the severe drug residue, and high treatment cost severely restrict the enthusiasm for the treatment of TD. Traditional Chinese medicine (TCM) has been used for the prevention, treatment, and cure of avian bone diseases. Previously, a couple of traditional Chinese medicines has been reported being useful in treating TD. This review will discuss the TCM used in TD and the alternative TCM to treat TD. Selecting a TCM approach and its pharmacologic effects on TD chickens mainly focused on the differentiation, proliferation, and apoptosis of chondrocytes, angiogenesis, matrix metabolism, oxidative damage, cytokines, and calcification of cartilage in tibia.
Collapse
|
12
|
LPS-induced inflammation disorders bone modeling and remodeling by inhibiting angiogenesis and disordering osteogenesis in chickens. Inflamm Res 2020; 69:765-777. [PMID: 32444883 DOI: 10.1007/s00011-020-01361-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammation plays a negative role in the growth and development of bone. However, the underlining mechanisms of inflammation caused abnormal bone development and even bone disease are still poorly understood, especially in chickens. In this study, we explored the influence of inflammation on bone formation in broilers for the first time by using lipopolysaccharide (LPS) to establish systemic inflammatory models in chickens with tibia as the research object. The measurements of production and tibial parameters showed an inefficient production performance and lower growth rate in LPS group. We also found a large amount of platelets, inflammatory cells in chickens' blood and higher levels of inflammatory factors in serum after LPS injection, meanwhile, increase in thrombus, chondrocyte nucleolysis, and osteoclasts and a reduction in blood vessels were observed in growth plate through histological observation. The qPCR analysis showed that the mRNA expression levels of NF-κB, TLR4, TF, TPO, and its receptor C-MPL enhanced, while VEGFA was inhibited in LPS group. In addition, in OPG/RANKL system, OPG was decreased while RANKL enhanced. It was also observed that the mRNA levels of MMP-9 and its inducing factor CD147 enhanced in LPS group. The western blot results were basically in consistent with mRNA test. Thus, we infer that inflammation can inhibit bone modeling and remodeling by affecting angiogenesis and osteogenesis, and result in negative effect on bone formation furtherly.
Collapse
|
13
|
Qamar H, Waqas M, Li A, Iqbal M, Mehmood K, Li J. Plastrum Testudinis Extract Mitigates Thiram Toxicity in Broilers via Regulating PI3K/AKT Signaling. Biomolecules 2019; 9:biom9120784. [PMID: 31779199 PMCID: PMC6995622 DOI: 10.3390/biom9120784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Tibial dyschondroplasia (TD) negatively affects broilers all over the world, in which the accretion of the growth plate (GP) develops into tibial proximal metaphysis. Plastrum testudinis extract (PTE) is renowned as a powerful antioxidant, anti-inflammatory, and bone healing agent. The current study was conducted to evaluate the efficacy of PTE for the treatment of thiram-induced TD chickens. Broilers (day old; n = 300) were raised for 3 days with normal feed. On the 4th day, three groups (n = 100 each) were sorted, namely, the control (normal diet), TD, and PTE groups (normal diet+ thiram 50 mg/kg). On the 7th day, thiram was stopped in the TD and PTE group, and the PTE group received a normal diet and PTE (30 mg/kg/day). Plastrum testudinis extract significantly restored (p < 0.05) the liver antioxidant enzymes, inflammatory cytokines, serum biochemicals, GP width, and tibia weight as compared to the TD group. The PTE administration significantly increased (p < 0.05) growth performance, vascularization, AKT (serine/threonine-protein kinase), and PI3K expressions and the number of hepatocytes and chondrocytes with intact nuclei were enhanced. In conclusion, PTE has the potential to heal TD lesions and act as an antioxidant and anti-inflammatory drug in chickens exposed to thiram via the upregulation of AKT and PI3K expressions.
Collapse
Affiliation(s)
- Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch 12350, Azad Jammu & Kashmir, Pakistan
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, China
- Correspondence: ; Tel.: +86-027-87286251
| |
Collapse
|
14
|
Waqas M, Wang Y, Li A, Qamar H, Yao W, Tong X, Zhang J, Iqbal M, Mehmood K, Li J. Osthole: A Coumarin Derivative Assuage Thiram-Induced Tibial Dyschondroplasia by Regulating BMP-2 and RUNX-2 Expressions in Chickens. Antioxidants (Basel) 2019; 8:antiox8090330. [PMID: 31443437 PMCID: PMC6770413 DOI: 10.3390/antiox8090330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
Avian tibial dyschondroplasia affects fast growing broiler chickens accounting for almost 30% of leg ailments in broilers. The present project was designed to assess the efficacy of osthole against avian tibial dyschondroplasia (TD). Two hundred and forty chickens were equally allocated into control, TD and osthole groups (n = 80). The TD and osthole group chickens were challenged with tetramethylthiuram disulfide (thiram) at 50 mg/kg of feed from 4–7 days, followed by osthole administration at 20 mg/kg orally to the osthole group only from 8–18 days. Thiram feeding resulted in lameness, increased mortality, and decreased production parameters, alkaline phosphatase (ALP), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and glutathione peroxidase (GSH-PX) levels, along with significantly increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) levels, and growth plate size. Moreover, the genes and protein expressions of BMP-2 and RUNX-2 were significantly down-regulated in TD affected chickens (p < 0.05). Osthole administration showed promising results by alleviating lameness; increased ALP, SOD, T-AOC, and GSH-Px levels; and decreased the AST, ALT, and MDA levels significantly. It restored the size of the growth plate and significantly up-regulated the BMP-2 and RUNX-2 expressions (p < 0.05). In conclusion, the oxidative stress and growth plate anomalies could be assuaged using osthole.
Collapse
Affiliation(s)
- Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch 12350, Azad Jammu & Kashmir, Pakistan
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- College of Animal Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China.
| |
Collapse
|
15
|
Zhang H, Mehmood K, Jiang X, Li Z, Yao W, Zhang J, Tong X, Wang Y, Li A, Waqas M, Iqbal M, Li J. Identification of differentially expressed MiRNAs profile in a thiram-induced tibial dyschondroplasia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:83-89. [PMID: 30889403 DOI: 10.1016/j.ecoenv.2019.03.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Tetramethyl thiuram disulfide (thiram) is a dithiocarbamate, which is widely used on seeds and storing food grains. The incorporation of thiram into the food chain could be a risk for both human beings and animals. Thiram-contaminated feed has been considered a common cause of tibial dyschondrolplasia (TD) in many avian species. The molecular mechanism of action of thiram on TD involving microRNA (miRNA) is not fully understood. For this purpose, the morbidity and pathologic changes were evaluated to understand the TD, and high-throughput RNA sequencing (RNA-Seq) was performed to explore the differentially expressed miRNAs (DEGs). RT-qPCR was used to confirm the validity as compared with sequencing data. The results showed that the marked alterations in the growth plate of the TD chickens were noticeable, with shrinking cells and irregular chondrocyte columns as compared with control group. In this study, we identified total 375 (p < 0.1), 340 (p < 0.05) and 266 (p < 0.01) significant DEGs between the TD and control groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that the target miRNAs were significantly enriched in different treatment groups, such as apoptosis, mRNA surveillance pathway, mitophagy-animal, etc. This study provides theoretical basis for in-depth understanding the pathogenesis of thiram-induced TD and explore the new insights towards the proposed molecular mechanism of specific miRNA as biomarkers for effective gene diagnosis and treatment of TD in broilers.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, PR China; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhixing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mujahid Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Department of Pathology, Cholistan University of Veterinary & Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, PR China.
| |
Collapse
|
16
|
Niu S, Wang CX, Jia FJ, Jahejo AR, Li X, Ning GB, Zhang D, Ma HL, Hao WF, Gao WW, Zhao YJ, Gao SM, Li JH, Li GL, Yan F, Gao RK, Huo NR, Tian WX, Chen HC. The expression of prostaglandins-related genes in erythrocytes of broiler chicken responds to thiram-induced tibial dyschondroplasia and recombinant glutathione-S-transferase A3 protein. Res Vet Sci 2019; 124:112-117. [PMID: 30878632 DOI: 10.1016/j.rvsc.2019.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Tibial dyschondroplasia (TD) is a type of bone deformity found in fast-growing chickens, which induce inflammatory responses. Prostaglandins (PGs) implicate in bone formation and bone resorption, associated with inflammation in an autocrine/paracrine manner. This study used qRT-PCR and immunohistochemistry analysis to identify the expression patterns of PG-related genes in the erythrocytes of broiler chickens and explore the effects of thiram-induced TD and the recombinant glutathione-S-transferase A3 (rGSTA3) protein on the expression of PG-related genes: GSTA3, cyclooxygenase 2 (COX-2), prostaglandin D2 synthase (PTGDS), prostaglandin E synthase (PTGES), prostaglandin E2 receptor (PTGER) 3, PTGER4 and prostaglandin reductase 1 (PTGR1). Interestingly, the results showed that these seven PG-related genes expression was identified in the erythrocytes of broiler chicken, and thiram-induced TD suppressed the expression of these PG-related genes in the initial stage of TD and promoted their expression in TD recovery. These findings demonstrated that the immunoregulatory function of erythrocytes can be inhibited in the early stage of TD and promoted in the recovery stage by modulating the expression of PG-related genes. Further, the rGSTA3 protein can modulate the expression of PG-related genes in erythrocytes and participate in the recovery of TD.
Collapse
Affiliation(s)
- S Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - C X Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - F J Jia
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - A R Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - X Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - G B Ning
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - D Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - H L Ma
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - W F Hao
- Taiyuan Center for Disease Control and Prevention, Taiyuan 030024, China
| | - W W Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Y J Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - S M Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - J H Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - G L Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - F Yan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - R K Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - N R Huo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - W X Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China.
| | - H C Chen
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Effect of Anacardic Acid against Thiram Induced Tibial Dyschondroplasia in Chickens via Regulation of Wnt4 Expression. Animals (Basel) 2019; 9:ani9030082. [PMID: 30845678 PMCID: PMC6466137 DOI: 10.3390/ani9030082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 11/20/2022] Open
Abstract
Simple Summary This study evaluated the ameliorating effect of anacardic acid (AA) in tibial dyschondroplasia (TD) chickens. Our results showed that AA can increase the feed conversion ratio, improve the weight, length and width of the tibia. AA administration restored the antioxidant parameters significantly (p < 0.05). The gene expression analysis revealed a decrease in wingless-type member 4 (Wnt4) expressions in TD chickens as compared to the control group, while AA treatment up-regulated the Wnt4 expression. The present study demonstrates that the AA plays an important role to prevent the lameness and restore the size of the tibial growth plate of chickens by regulating the expression of Wnt4. Abstract Tibial dyschondroplasia (TD) is a tibia bone problem in broilers. Anacardic acid (AA) is a traditional Chinese medicine, which is commonly used to treat arthritis in human. The purpose of the present study is to investigate the effect of AA against TD. A total of 300 day-old poultry birds were equally divided and distributed into three different groups: Control, TD and AA groups. The results showed that the feed conversion ratio was significantly lower in the TD group than control chickens. The tibia bone parameters including weight, length and width were of low quality in TD chickens, while the width of the tibial growth plate was enlarged remarkably. Whereas, in the AA treatment group, the tibia bone parameters showed improvement and tend to return to normal. The antioxidant parameters level of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total and antioxidant capacity (T-AOC) was significantly decreased, while malondialdehyde (MDA) level was increased significantly in TD affected chickens. AA administration restored the antioxidant parameters significantly. The gene expression revealed a decrease in Wnt4 expression in TD chickens as compared to control chickens, while AA treatment up-regulated the Wnt4 expression. The present study demonstrates that the AA plays an important role to prevent the lameness and restore the size of tibial growth plate of chickens by regulating the expression of Wnt4.
Collapse
|
18
|
Kapakin KAT, Kapakin S, Imik H, Gumus R, Eser G. The Investigation of the Relationship Between HSP-27 Release and Oxidative DNA Damage in Broiler Chickens with Tibial Dyschondroplasia by Using Histopathological and Immunohistochemical Methods. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2019-1091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - H Imik
- Atatürk University, Turkey
| | - R Gumus
- Cumhuriyet University, Turkey
| | - G Eser
- Atatürk University, Turkey
| |
Collapse
|
19
|
Nabi F, Iqbal MK, Zhang H, Rehman MU, Shahzad M, Huang S, Han Z, Mehmood K, Ahmed N, Chachar B, Arain MA, Li J. Clinical efficiency and safety of Hsp90 inhibitor Novobiocin in avian tibial dyschondroplasia. J Vet Pharmacol Ther 2018; 41:902-911. [PMID: 30004119 DOI: 10.1111/jvp.12692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
Abstract
Tibial dyschondroplasia (TD) is a bone defect of broilers and other poultry birds that disturbs growth plate and it causes lameness. Previously we evaluated differential expression of multiple genes involved in growth plate angiogenesis and reported the safety and efficacious of medicinal plant root extracted for controlling TD. In this study, clinical and protective effect of an antibiotic Novobiocin (Hsp90 inhibitor) and expression of Hsp90 and proteoglycan aggrecan was examined. The chicks were divided into three groups; Control, thiram-induced TD, and Novobiocin injected TD. After the induction of TD, the Novobiocin was administered through intraperitoneal route to TD-affected birds until the end of the experiment. The expressions and localization of Hsp90 were evaluated by qRT-PCR, immunohistochemistry (IHC) and western blot, respectively. Morphological, histological examinations, and serum biomarker levels were evaluated to assess specificity and protective effects of Novobiocin. The results showed that TD causing retarded growth, enlarged growth plate, distended chondrocytes, irregular columns of cells, decreased antioxidant capacity, reduced protein levels of proteoglycan aggrecan, and upregulated in Hsp90 expression (p < 0.05) in dyschondroplastic birds as compared with control. Novobiocin treatment restored growth plate morphology, reducing width, stimulated chondrocyte differentiation, sprouting blood vessels, corrected oxidative imbalance, decreased Hsp90 expressions and increased aggrecan level. Novobiocin treatment controlled lameness and improved growth in broiler chicken induced by thiram. In conclusion, the accumulation of the cartilage and up-regulated Hsp90 are associated with TD pathogenesis and irregular chondrocyte morphology in TD is along with reduced aggrecan levels in the growth plate. Our results indicate that Novobiocin treatment has potential to reduce TD by controlling the expression of Hsp90 in addition to improve growth and hepatic toxicity in broiler chicken.
Collapse
Affiliation(s)
- Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Muhammad K Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shahzad
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Khalid Mehmood
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nisar Ahmed
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Bahram Chachar
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Muhammad A Arain
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science and Veterinary Medicine, Tibet Agricultural and Animal Husbandry College, Tibet, China
| |
Collapse
|
20
|
Effect of Icariin on Tibial Dyschondroplasia Incidence and Tibial Characteristics by Regulating P2RX7 in Chickens. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6796271. [PMID: 29750168 PMCID: PMC5884288 DOI: 10.1155/2018/6796271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 01/07/2023]
Abstract
Tibial dyschondroplasia (TD) is a disease of rapid growing chickens that occurs in many avian species; it is characterized by nonvascular and nonmineralized growth plates, along with tibia bone deformation and lameness. Icariin is widely used to treat bone diseases in humans, but no report is available regarding the effectiveness of icariin against avian TD. Therefore, this study was designed to determine its effect against TD. For this purpose, a total of 180 broiler chicks were distributed into three groups including control, TD, and icariin group. Control group was given a standard normal diet, while TD and icariin groups received normal standard diet containing 50 mg/kg thiram to induce TD from days 3 to 7 after hatch. After the induction of TD, the chicks of icariin group were fed with standard normal diet by adding 10 mg/kg icariin in water. Then morphological and production parameters analysis of tibial bone indicators, physiological index changes, and gene expression were examined. The results showed that icariin administration not only decreased the mortality but also mitigated the lameness and promoted the angiogenesis, which diminished the TD lesion and significantly increased the expression of P2RX7 (P < 0.05) in TD affected thiram induced chicks. In conclusion, present findings suggest that icariin has a significant role in promoting the recovery of chicken growth plates affected by TD via regulating the P2RX7. Our findings reveal a new target for clinical treatment and prevention of TD in broiler chickens.
Collapse
|
21
|
Role and regulation of growth plate vascularization during coupling with osteogenesis in tibial dyschondroplasia of chickens. Sci Rep 2018; 8:3680. [PMID: 29487404 PMCID: PMC5829164 DOI: 10.1038/s41598-018-22109-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Tibial dyschondroplasia (TD) is the most-prevalent leg disorder in fast-growing chickens; it is intractable and characterized by abnormal endochondral bone formation of proximal tibial growth-plates (TGPs). Previous studies have shown that bone is a highly vascularized tissue dependent on the coordinated coupling between angiogenesis and osteogenesis, but the underlying mechanisms of bone formation and bone remodeling are poorly defined in TD chickens. Here, we observed that inhibition of vasculogenesis and angiogenesis remarkably impaired vascular invasion in the hypertrophic chondrocyte zone of the TGPs, resulting in the massive death of chondrocytes due to a shortage of blood vessels and nutrients. Moreover, the balance of the OPG (osteoprotegerin)/RANKL (receptor activator of nuclear factor-kB ligand) system is also severely disrupted during the osteogenesis process while coupling with angiogenesis, both of which eventually lead to abnormal endochondral bone formation in TD chickens. Thus, the process of vascular formation in endochondral bone appears to initiate the pathological changes in TD, and improvement of this process during coupling with osteogenesis may be a potential therapeutic approach to treat this intractable disease.
Collapse
|
22
|
Zhang H, Mehmood K, Li K, Rehman MU, Jiang X, Huang S, Wang L, Zhang L, Tong X, Nabi F, Yao W, Iqbal MK, Shahzad M, Li J. Icariin Ameliorate Thiram-Induced Tibial Dyschondroplasia via Regulation of WNT4 and VEGF Expression in Broiler Chickens. Front Pharmacol 2018. [PMID: 29527166 PMCID: PMC5829035 DOI: 10.3389/fphar.2018.00123] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tibial dyschondroplasia (TD) is main bone problem in fast growing poultry birds that effect proximal growth plate (GP) of tibia bone. TD is broadly defined as non-vascularized and non-mineralized, and enlarged GP with tibia bone deformation and lameness. Icariin (Epimedium sagittatum) is a traditional Chinese medicine, which is commonly practiced in the treatment of various bone diseases. Recently, many researcher reports about the beneficial effects of icariin in relation to various types of bone conditions but no report is available about promoting effect of icariin against TD. Therefore, current study was conducted to explore the ameliorating effect of icariin in thiram-induced TD chickens. A total of 180 broiler chicks were equally distributed in three groups; control, TD induced by thiram (50 mg/kg), and icariin group (treated with icariin @10 mg/kg). All groups were administered with normal standard diet ad libitum regularly until the end of experiment. The wingless-type member 4 (WNT4) and vascular endothelial growth factor (VEGF) genes and proteins expression were analyzed by quantitative real-time polymerase chain reaction and western blot analysis respectively. Tibial bone parameters, physiological changes in serum, antioxidant enzymes, and chicken growth performance were determined to assess advantage and protective effect of the medicine in broiler chicken. The expression of WNT4 was decreased while VEGF increased significantly (P < 0.05) in TD affected chicks. TD enhanced the GP, lameness, and irregular chondrocytes, while reduced the liver function, antioxidant enzymes in liver, and performance of chickens. Icariin treatment up-regulated WNT4 and down-regulated VEGF gene and protein expressions significantly (P < 0.05), restored the GP width, increased growth performance, corrected liver functions and antioxidant enzymes levels in liver, and mitigated the lameness in broiler chickens. In conclusion, icariin administration recovered GP size, normalized performance and prevented lameness significantly. Therefore, icariin treatments are encouraged to reduce the incidence of TD in broiler chickens.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mujeeb U Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad K Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shahzad
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| |
Collapse
|
23
|
Effect of tetramethylpyrazine on tibial dyschondroplasia incidence, tibial angiogenesis, performance and characteristics via HIF-1α/VEGF signaling pathway in chickens. Sci Rep 2018; 8:2495. [PMID: 29410465 PMCID: PMC5802779 DOI: 10.1038/s41598-018-20562-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/22/2018] [Indexed: 01/14/2023] Open
Abstract
Tibial dyschodroplasia (TD) is a most common pathological condition in many avian species that is characterized by failure of growth plate (GP) modeling that leads to the persistence of avascular lesion in the GP. Tetramethylpyrazine (TMP) is widely used to treat neurovascular disorders and pulmonary hypertension, but no report is available about promoting effect of TMP against TD. Therefore, a total of 210 broiler chicks were equally divided into three groups; Control, TD and TMP. During the experiment mortality rate, chicken performance indicators (daily weight, average daily feed intake, average daily weight gain and feed conversion ratio), tibia bone indicators (weight, length, width of tibial and the size of GP) in addition to gene expression of HIF-1α and VEGF were examined. The results showed that TMP administration restore the GP width, increase growth performance, and mitigated the lameness in broiler chickens. The expression of HIF-1α and VEGF increased significantly in TD affected thiram induced chicks. Whereas, TMP treatment down-regulated HIF-1α and VEGF genes and proteins expressions. The present study demonstrates that the TMP plays an important role in angiogenesis during the impairment and recovery of GP in TD via regulation of the HIF-1α/VEGF signaling pathway in chickens.
Collapse
|
24
|
Mehmood K, Zhang H, Iqbal MK, Rehman MU, Shahzad M, Li K, Huang S, Nabi F, Zhang L, Li J. In VitroEffect of Apigenin and Danshen in Tibial Dyschondroplasia Through Inhibition of Heat-Shock Protein 90 and Vascular Endothelial Growth Factor Expressions in Avian Growth Plate Cells. Avian Dis 2017; 61:372-377. [DOI: 10.1637/11641-032817-regr] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Kashif Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Shahzad
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, People's Republic of China
| |
Collapse
|
25
|
Iqbal MK, Liu J, Nabi F, Rehman MU, Zhang H, Tahir AH, Li J. Recovery of Chicken Growth Plate by Heat-Shock Protein 90 Inhibitors Epigallocatechin-3-Gallate and Apigenin in Thiram-Induced Tibial Dyschondroplasia. Avian Dis 2016; 60:773-778. [DOI: 10.1637/11425-041816-reg] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Abstract
Fertile eggs from Cobb 500 broiler breeder hens were incubated to provide low starting egg shell temperatures (EST; 36.9°C to 37.3°C) which were gradually increased to 37.8°C during the first 7 to 15 days of incubation compared with eggs incubated with a constant EST of 37.8°C (standard conditions) over the first 18 days of incubation. Time of individual chick hatching (measured at 6 h intervals from 468 h of incubation), chick weight, chick length and yolk weight were measured at take-off and BW was measured at 7, 14, 28, 34 and 42 days of age. Male birds at 34 and 42 days of age were assessed for their ability to remain standing in a latency-to-lie test. At 34 and 42 days, male birds were examined for leg symmetry, foot pad dermatitis, hock bruising and scored (scale 0 to 4, where 0=no lesion and 4=lesions extending completely across the tibial growth plate) for tibial dyschondroplasia (TD) lesions. The lower EST profiles caused chicks to hatch later than those incubated under the standard EST profile. Chicks which hatched at ⩽498 h incubation grew faster over the first 7 days than those that hatched later. There were significantly more birds (only males were studied) that hatched from the lower EST profiles with TD scores of 0 and 1 and fewer with score 4 at 34 days than those hatched under the standard profile. Male birds at 34 days with TD lesions ⩾3 stood for significantly shorter times than males with TD scores ⩽2. Moreover, male birds at 34 and 42 days with TD lesion scores of ⩾3 hatched significantly earlier and grew significantly faster over the first 2 weeks of age than did male birds with TD scores ⩽2. It appears possible to decrease the severity and prevalence of TD in the Cobb 500 broiler by ensuring that the birds do not hatch before 498 h of incubation.
Collapse
|
27
|
Nabi F, Shahzad M, Liu J, Li K, Han Z, Zhang D, Iqbal MK, Li J. Hsp90 inhibitor celastrol reinstates growth plate angiogenesis in thiram-induced tibial dyschondroplasia. Avian Pathol 2016; 45:187-93. [DOI: 10.1080/03079457.2016.1141170] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|