1
|
Liu H, Li T, Ding S, Tang J, Wang C, Wang D. Complete genome sequence analysis and biological characteristics of Newcastle disease viruses from different hosts in China. Virus Genes 2023; 59:449-456. [PMID: 36929339 DOI: 10.1007/s11262-023-01988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
Newcastle disease (ND) is one of the most serious diseases affecting poultry worldwide. In 2022, we studied two strains of Newcastle disease virus (NDV) from pigeons and magpies identified by PCR and propagated in SPF chicken embryos. The whole genome of the virus was then expanded and its biological characteristics were studied. The results showed that NDV was isolated from pigeons and magpies. Virus present in the allantoic fluid could agglutinate red blood cells and could not be neutralized by serum positive for avian influenza. Sequencing showed that the gene length of the two isolates was 15,191 bp, had high homology and was located in the same branch of the phylogenetic tree, both belonging to genotype VI.1.1. The sequence of 112-117 amino acids in the F gene sequence was 112R-R-Q-K-R-F117, which constituted virulent strain characteristics. The HN gene contained 577 amino acids, which is also consistent with the characteristics of a virulent strain. The results from the study of biological characteristics revealed that the virulence of SX/TY/Pi01/22 was slightly stronger. There were only four different bases in the complete sequence of the two strains. Comprehensive analysis revealed that the G at 11,847 site of the SX/TY/Ma01/22 strain may change to T, leading to translation of amino acids from R to S, thereby weakening viral virulence. Therefore, NDV was transmitted from pigeons to magpies, indicating that the pathogen could be transmitted between poultry and wild birds.
Collapse
Affiliation(s)
- Huadong Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, 030032, China.
| | - Tingting Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Shurong Ding
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Juan Tang
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Caixian Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Dongcai Wang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| |
Collapse
|
2
|
Cao Y, Bo Z, Ruan B, Guo M, Zhang C, Zhang X, Wu Y. Construction of Novel Thermostable Chimeric Vaccine Candidates for Genotype VII Newcastle Disease Virus. Viruses 2022; 15:82. [PMID: 36680122 PMCID: PMC9866313 DOI: 10.3390/v15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Genotype VII Newcastle Disease Virus (NDV) has caused a pandemic in many countries and usually causes fatal consequences in infected chickens. Although current commercial attenuated NDV vaccines can provide an ideal protection against genotype VII NDV, they cannot completely prevent the infection and viral shedding, and the genotype of some vaccine strains cannot match with the prevalent strain. In this study, in order to construct a thermostable and genotype VII-matched live attenuated vaccine, we used a thermostable genotype VIII virulent HR09 strain as the backbone and replaced its F gene with that of the genotype VII DT-2014 strain. Meanwhile, the cleavage site of F gene of DT-2014 was mutated to that of class I F protein and avirulent class II F protein, respectively. The results showed that the two chimeric viruses, designated rcHR09-CI and rcHR09-CII, shared a similar growth kinetics and thermostability with their parental HR09 strain. Mean death time (MDT) and intracerebral pathogenicity index (ICPI) tests showed that the two chimeric viruses were highly attenuated. Though both chimeric NDVs and La Sota vaccine strain could provide complete protection to immunized chickens against the challenge of virulent genotype VII ZJ1 strain, the two chimeric NDVs could induce a higher level of antibody response against ZJ1 strain and could significantly reduce the viral shedding compared with La Sota vaccine strain. In conclusion, our study constructed two chimeric thermostable genotype VII-matched NDV vaccine candidates, which provided complete protection against the challenge of virulent genotype VII NDV.
Collapse
Affiliation(s)
- Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Baoyang Ruan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Angeliya L, Kristianingrum YP, Asmara W, Wibowo MH. Genetic characterization and distribution of the virus in chicken embryo tissues infected with Newcastle disease virus isolated from commercial and native chickens in Indonesia. Vet World 2022; 15:1467-1480. [PMID: 35993083 PMCID: PMC9375212 DOI: 10.14202/vetworld.2022.1467-1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Aim: Newcastle disease (ND) is a viral infectious disease that affects commercial and native chickens, resulting in economic losses to the poultry industry. This study aimed to examine the viral strains circulating in commercial and native chickens by genetic characterization and observe the distribution of Newcastle disease virus (NDV) in chicken embryonic tissue. Materials and Methods: ND was detected using a quantitative reverse transcription-polymerase chain reaction. Genetic characterization of the fusion (F) and hemagglutinin-neuraminidase (HN) genes from the eight NDVs was performed using specific primers. The sequence was compared with that of other NDVs from GenBank and analyzed using the MEGA-X software. The distribution of NDV in chicken embryos was analyzed based on lesions and the immunopositivity in immunohistochemistry staining. Results: Based on F gene characterization, velogenic NDV strains circulating in commercial and native chickens that showed varying clinical symptoms belonged to genotype VII.2. Lentogenic strains found in chickens without clinical symptoms were grouped into genotype II (unvaccinated native chickens) and genotype I (vaccinated commercial chickens). Amino acid variations in the HN gene, namely, the neutralization epitope and antigenic sites at positions 263 and 494, respectively, occurred in lentogenic strains. The NDV reaches the digestive and respiratory organs, but in lentogenic NDV does not cause significant damage, and hence embryo death does not occur. Conclusion: This study showed that velogenic and lentogenic NDV strains circulated in both commercial and native chickens with varying genotypes. The virus was distributed in almost all organs, especially digestive and respiratory. Organ damage in lentogenic infection is not as severe as in velogenic NDV. Further research is needed to observe the distribution of NDV with varying pathogenicity in chickens.
Collapse
Affiliation(s)
- Liza Angeliya
- Veterinary Science Doctoral Study Program, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Disease Investigation Center Lampung, Jalan Untung Suropati Bandar Lampung, Lampung, 35142, Indonesia
| | | | - Widya Asmara
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Michael Haryadi Wibowo
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
4
|
Yu X, Luo Y, Wang J, Shu B, Jiang W, Liu S, Li Y, Li J, Hou G, Peng C, Wang S, Yuan L, Yu J, Liu H, Wang Z. A molecular, epidemiological and pathogenicity analysis of pigeon paramyxovirus type 1 viruses isolated from live bird markets in China in 2014-2021. Virus Res 2022; 318:198846. [PMID: 35691423 DOI: 10.1016/j.virusres.2022.198846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
To expand our understanding of the epidemiology of pigeon paramyxovirus type 1 (PPMV-1) in China, risk-based active surveillance was undertaken with pigeon swabs collected from live bird markets in 2014-2021. Seventy-six PPMV-1 strains were isolated from 12 provinces (60%) of the 20 provinces surveyed, and the positive rates of PPMV-1 varied from 0.50% to 3.19% annually. The complete genomic sequences of 18 representative viruses were analyzed, revealing a genome of 15,192 nucleotides, with the gene order 3'-NP-P-M-F-HN-L-5'. All isolates contained the 112RRQKRF117 cleavage site in the fusion (F) protein, a characteristic generally associated with virulent Newcastle disease viruses (NDVs), and the intracerebral pathogenicity index values (1.05-1.41) of four isolates indicated their virulence. A challenge experiment also demonstrated that all four isolates are pathogenic to pigeons, with morbidity rates of 60-100% and mortality rates of 0-30%. A further analysis of the functional domains of the F and HN proteins revealed several mutations in the fusion peptide, signal peptide, neutralizing epitopes, heptad repeat region, and transmembrane domains, and the substitution of cysteine residue 25 (C25Y) and substitutions in the HRb region (V287I) of the F protein and the transmembrane domain (V45A) of the HN protein may play important roles in PPMV-1 virulence. In a phylogenetic analysis based on the complete sequences of the F gene, all eighteen isolates all clustered into sub-genotype VI.2.1.1.2.2 (VIb) in class II, and shared high nucleotide sequence identity, indicating that the PPMV-1 strains in sub-genotype VI.2.1.1.2.2 are the predominant PPMV-1 viruses in pigeons in China and that the variations in these viruses have been relatively stable over the past 8 years. This study identifies the genetic and pathogenicity characteristics of the PPMV-1 strains prevalent in China and extends our understanding of the prevalence of this virus in China.
Collapse
Affiliation(s)
- Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao 266032, China.
| | - Yaoyao Luo
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Jingjing Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Bo Shu
- China Animal Health and Epidemiology Center, Qingdao 266032, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330000, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Shuo Liu
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Yang Li
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Jinping Li
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Guangyu Hou
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Cheng Peng
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Suchun Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Liping Yuan
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Jianmin Yu
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao 266032, China.
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China.
| |
Collapse
|
5
|
Surveillance of Class I Newcastle Disease Virus at Live Bird Markets in China and Identification of Variants with Increased Virulence and Replication Capacity. J Virol 2022; 96:e0024122. [PMID: 35510864 DOI: 10.1128/jvi.00241-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, 232 class I Newcastle disease viruses (NDVs) were identified from multiple bird species at nationwide live bird markets (LBMs) from 2017 to 2019 in China. Phylogenetic analysis indicated that all 232 isolates were clustered into genotype 1.1.2 of class I on the basis of the fusion (F) gene sequences, which were distinct from the genotypes identified in other countries. Most of the isolates (212/232) were shown to have the typical F gene molecular characteristics of class I NDVs, while a few (20/232) contained mutations at the site of the conventional start codon of the F gene, which resulted in open reading frames (ORFs) altered in length. The isolates with ACG, CTA, and ATA mutations showed different levels of increased virulence and replication capacity, suggesting that these viruses may be transitional types during the evolution of class I NDVs from avirulent to virulent. Further evaluation of biological characteristics with recombinant viruses obtained by reverse genetics demonstrated that the ATG located at genomic positions 4523 to 4525 was the authentic start codon in the F gene of class I NDV, and the specific ATA mutations which contributed to the expression of F protein on the surface of infected cells were the key determinants of increased replication capacity and virulence. Interestingly, the mutation at the corresponding site of genotype II LaSota of class II had no effects on the virulence and replication capacity in chickens. Our results suggest that the alteration of virulence and replication capacity caused by specific mutations in the F gene could be a specific characteristic of class I NDVs and indicate the possibility of the emergence of virulent NDVs due to the persistent circulation of class I NDVs. IMPORTANCE The available information on the distribution, genetic diversity, evolution, and biological characteristics of class I Newcastle disease viruses (NDVs) in domestic poultry is currently very limited. Here, identification of class I NDVs at nationwide live bird markets (LBMs) in China was performed and representative isolates were characterized. A widespread distribution of genotype 1.1.2 of class I NDVs was found in multiple bird species at LBMs in China. Though most isolates demonstrated typical molecular characteristics of class I NDVs, a few that contained specific mutations at the site of the conventional start codon of the fusion gene with increased virulence and replication capacity were identified for the first time. Our findings indicate that the virulence of class I NDVs could have evolved, and the widespread transmission and circulation of class I NDVs may represent a potential threat for disease outbreaks in poultry.
Collapse
|
6
|
Mansour SMG, ElBakrey RM, Mohamed FF, Hamouda EE, Abdallah MS, Elbestawy AR, Ismail MM, Abdien HMF, Eid AAM. Avian Paramyxovirus Type 1 in Egypt: Epidemiology, Evolutionary Perspective, and Vaccine Approach. Front Vet Sci 2021; 8:647462. [PMID: 34336965 PMCID: PMC8320000 DOI: 10.3389/fvets.2021.647462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Avian orthoavulavirus 1, formerly known as avian paramyxovirus type-1 (APMV-1), infects more than 250 different species of birds. It causes a broad range of clinical diseases and results in devastating economic impact due to high morbidity and mortality in addition to trade restrictions. The ease of spread has allowed the virus to disseminate worldwide with subjective virulence, which depends on the virus strain and host species. The emergence of new virulent genotypes among global epizootics, including those from Egypt, illustrates the time-to-time genomic alterations that lead to simultaneous evolution of distinct APMV-1 genotypes at different geographic locations across the world. In Egypt, the Newcastle disease was firstly reported in 1947 and continued to occur, despite rigorous prophylactic vaccination, and remained a potential threat to commercial and backyard poultry production. Since 2005, many researchers have investigated the nature of APMV-1 in different outbreaks, as they found several APMV-1 genotypes circulating among various species. The unique intermingling of migratory, free-living, and domesticated birds besides the availability of frequently mobile wild birds in Egypt may facilitate the evolution power of APMV-1 in Egypt. Pigeons and waterfowls are of interest due to their inclusion in Egyptian poultry industry and their ability to spread the infection to other birds either by presence of different genotypes (as in pigeons) or by harboring a clinically silent disease (as in waterfowl). This review details (i) the genetic and pathobiologic features of APMV-1 infections in Egypt, (ii) the epidemiologic and evolutionary events in different avian species, and (iii) the vaccine applications and challenges in Egypt.
Collapse
Affiliation(s)
- Shimaa M G Mansour
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham M ElBakrey
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fakry F Mohamed
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Esraa E Hamouda
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona S Abdallah
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed R Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Mahmoud M Ismail
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Hanan M F Abdien
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal A M Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Wajid A, Mayahi V, Yin R, Ain Q, Mohiuddin A, Khalid F, Rehim A, Manan A, Baksh M. Genomic and biological characteristics of Avian Orthoavulavirus-1 strains isolated from multiple wild birds and backyard chickens in Pakistan. Trop Anim Health Prod 2021; 53:90. [PMID: 33415381 DOI: 10.1007/s11250-020-02497-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023]
Abstract
Circulation of the dominant sub-genotype VII.2 of Avian Orthoavulavirus-1 (AOAV-1) is affecting multiple poultry and non-poultry avian species and causing significant economic losses to the poultry industry worldwide. In countries where ND is endemic, continuous monitoring and characterization of field strains are necessary. In this study, genetic characteristics of eleven AOAV-1 strains were analyzed isolated from wild birds including parakeets (n = 3), lovebird parrot (n = 1), pheasant (n = 1), peacock (n = 1), and backyard chickens (n = 5) during 2015-2016. Genetic characterization (genome size [15,192 nucleotides], the presence of typical cleavage site [112-RRQKRF-117]) and biological assessment (HA log 27 to 29 and intracerebral pathogenicity index [ICPI] value ranging from 1.50 to 1.86) showed virulent AOAV-1. Phylogenetic analysis showed that the studied isolates belonged to sub-genotype VII.2 and genetically very closely related (> 98.9%) to viruses repeatedly isolated (2011-2018) from commercial poultry. These findings provide evidence for the existence of epidemiological links between poultry and wild bird species in the region where the disease is prevalent. The deduced amino acid analysis revealed several substitutions in critical domains of fusion and hemagglutinin-neuraminidase genes. The pathogenesis and transmission potential of wild bird-origin AOAV-1 strain (AW-Pht/2015) was evaluated in 21-day-old chickens that showed the strain was highly virulent causing clinical signs and killed all chickens. High viral loads were detected in different organs of the infected chickens correlating with the severity of lesions developed. The continuous monitoring of AOAV-1 isolates in different species of birds will improve our knowledge of the evolution of these viruses, thereby preventing possible panzootic.
Collapse
Affiliation(s)
- Abdul Wajid
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan.
| | - Vafa Mayahi
- Central Laboratory Department, Razi Vaccine and Serum Research Institute Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Renfu Yin
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Road 5333, Changchun, Xi'an, 130062, Jilin, China
| | - Quratul Ain
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Ayesha Mohiuddin
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Farah Khalid
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Asif Rehim
- Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Balochistan, Pakistan
| | - Abdul Manan
- Center for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Muqadas Baksh
- Departmeny of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| |
Collapse
|
8
|
Chen X, Chen S, Chen H, Tian J, Zhao X, Jia Y, Xiao S, Wang X, Liu H, Yang Z. Comparative biology of two genetically closely related Newcastle disease virus strains with strongly contrasting pathogenicity. Vet Microbiol 2020; 253:108977. [PMID: 33421684 DOI: 10.1016/j.vetmic.2020.108977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Abstract
A lentogenic strain of Newcastle disease virus (NDV) with an intracerebral pathogenicity index (ICPI) of 0.36 was derived by the passage of a mesogenic NDV isolate with an original ICPI of 1.04. Animal experiments showed that the original strain caused much severer clinical signs and mortality than the derived strain in chickens. To elucidate the molecular reason for this virulence change, the complete viral genomes of the original and derived strains were sequenced. Molecular analysis showed that both viruses contained the same fusion (F) protein with a cleavage site (Fcs) motif that is usually associated with velogenic viruses. Molecular comparison revealed five amino acid (aa) differences in nucleoprotein (NP) (aa 426), hemagglutinin-neuraminidase (HN) (aas 215 and 430), and large protein (L) (aas 1694 and 1767), accompanied by the changes of relevant biological activities in membrane fusion and replication. Thus, we believe that the virulence changes may induced by these mutations. Our findings make a foundation for more in-depth investigations of the molecular mechanism underlying virulence.
Collapse
Affiliation(s)
- Xi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Siqi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Haotian Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Jianxia Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xueliang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yanqing Jia
- Department of Animal Engineering, Yangling Vocational & Technical College, Yangling, Shaanxi Province, 712100, PR China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
9
|
Gao S, Zhao Y, Yu J, Wang X, Zheng D, Cai Y, Liu H, Wang Z. Comparison between class I NDV and class II NDV in aerosol transmission under experimental condition. Poult Sci 2019; 98:5040-5044. [PMID: 31064012 DOI: 10.3382/ps/pez233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/30/2019] [Indexed: 11/20/2022] Open
Abstract
Recent epidemiological surveys have shown that class I Newcastle disease virus (NDV) is widely distributed in China. However, little is currently known about its transmission. Therefore, in this study, we compared the transmission of class I and class II NDV. Specific-pathogen-free chickens were divided into a class I NDV inoculation group and an aerosol-exposed infection group and kept in 2 separate isolators (A and B, respectively) that were connected with an airtight plastic pipe. After inoculation, air samples were collected regularly with an All-Glass Impinger-30 (Liaoyang, China), and the airborne virus contents were analyzed using the plaque count method. In addition, oral and cloacal swabs were collected regularly to detect virus shedding using quantitative reverse transcription PCR. Similar trials were conducted simultaneously with class II NDV in isolators C and D. We consistently detected class I NDV aerosols in both isolators A and B up to 40 D post-inoculation (dpi). The aerosol concentration reached a maximum of 13.81 × 103 plague-forming units per cubic meter of air at 18 dpi and was significantly higher than that of class II NDV at 21 and 24 dpi. We also detected class I virus shedding from 2 to 40 dpi in the inoculated chickens and from 7 to 40 D post-aerosol-exposed infection in the aerosol-exposed chickens. This phenomenon may explain why class I NDV has been the primary epidemic strain of NDV in recent years.
Collapse
Affiliation(s)
- Shengbin Gao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Taian City 271018, Shandong Province, China
| | - Yunling Zhao
- China Animal Health and Epidemiology Center, Qingdao 266032, Shandong Province, China
| | - Jiarong Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Taian City 271018, Shandong Province, China
| | - Xiaoyu Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Taian City 271018, Shandong Province, China
| | - Dongxia Zheng
- China Animal Health and Epidemiology Center, Qingdao 266032, Shandong Province, China
| | - Yumei Cai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Taian City 271018, Shandong Province, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao 266032, Shandong Province, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, Shandong Province, China
| |
Collapse
|
10
|
A novel mutation tolerant padlock probe design for multiplexed detection of hypervariable RNA viruses. Sci Rep 2019; 9:2872. [PMID: 30814634 PMCID: PMC6393471 DOI: 10.1038/s41598-019-39854-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
The establishment of a robust detection platform for RNA viruses still remains a challenge in molecular diagnostics due to their high mutation rates. Newcastle disease virus (NDV) is one such RNA avian virus with a hypervariable genome and multiple genotypes. Classical approaches like virus isolation, serology, immunoassays and RT-PCR are cumbersome, and limited in terms of specificity and sensitivity. Padlock probes (PLPs) are known for allowing the detection of multiple nucleic acid targets with high specificity, and in combination with Rolling circle amplification (RCA) have permitted the development of versatile pathogen detection assays. In this work, we aimed to detect hypervariable viruses by developing a novel PLP design strategy capable of tolerating mutations while preserving high specificity by targeting several moderately conserved regions and using degenerate bases. For this, we designed nine padlock probes based on the alignment of 335 sequences covering both Class I and II NDV. Our PLP design showed high coverage and specificity for the detection of eight out of ten reported genotypes of Class II NDV field isolated strains, yielding a detection limit of less than ten copies of viral RNA. Further taking advantage of the multiplex capability of PLPs, we successfully extended the assay for the simultaneous detection of three poultry RNA viruses (NDV, IBV and AIV) and combined it with a paper based microfluidic enrichment read-out for digital quantification. In summary, our novel PLP design addresses the current issue of tolerating mutations of highly emerging virus strains with high sensitivity and specificity.
Collapse
|
11
|
Wu C, Hu J, Ci X, Nie Y, Chen D, Zhang X, Chen W, Lin W, Xie Q. Molecular characterization, pathogenicity, and protection efficacy analysis of 2 wild-type lentogenic class I Newcastle disease viruses from chickens in China. Poult Sci 2019; 98:602-612. [PMID: 30376072 DOI: 10.3382/ps/pey471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, 2 wild-type Newcastle disease viruses (NDVs), designated as CK/GX/65/15 and CK/GX/26/15, were isolated from asymptomatic chickens in Guangxi province, China. They were identified as lentogenic NDV with mean death time (MDT) above 90 and intracerebral pathogenicity index (ICPI) below 0.7. The results of complete genome sequence analysis show that the 2 NDV strains are members of class I genotype 3 with the length 15,198 nt, which followed the "rule of six" and the order 3'-NP-P-M-F-HN-L-5'. In addition, 8 amino acid substitutions were identified in the functional domains of fusion protein (F) of CK/GX/65/15 and 9 in CK/GX/26/15, whose amino acid sequences of F protein cleavage site are 112E-R-Q-E-R-L117. The isolates were found to be apathogenic in specific pathogen free (SPF) chickens and ducks without morbidity or mortality. Furthermore, the protection study shows that isolates can provide the same effective protection against a major NDV virulent strain in China (class II genotype VII) as the commercial vaccine LaSota. Moreover, vaccination with isolates reduced number of chickens shedding virus compared to those vaccinated with LaSota. In conclusion, 2 wild-type NDV strains exhibited fine protection efficacy against genotype VII NDV in poultry and can be considered as candidate vaccines against NDV.
Collapse
Affiliation(s)
- Che Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China
| | - Jinzhi Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China
| | - Xiaotong Ci
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China
| | - Yu Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China
| | - Dekui Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China
| | - Xinheng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China.,Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510640, PR China
| | - Weiguo Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China.,Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510640, PR China
| | - Wencheng Lin
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China.,Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510640, PR China
| | - Qingmei Xie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China.,Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510640, PR China
| |
Collapse
|
12
|
Genotype Diversity of Newcastle Disease Virus in Nigeria: Disease Control Challenges and Future Outlook. Adv Virol 2018; 2018:6097291. [PMID: 30631359 PMCID: PMC6304561 DOI: 10.1155/2018/6097291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/28/2018] [Indexed: 11/17/2022] Open
Abstract
Newcastle disease (ND) is one of the most important avian diseases with considerable threat to the productivity of poultry all over the world. The disease is associated with severe respiratory, gastrointestinal, and neurological lesions in chicken leading to high mortality and several other production related losses. The aetiology of the disease is an avian paramyxovirus type-1 or Newcastle disease virus (NDV), whose isolates are serologically grouped into a single serotype but genetically classified into a total of 19 genotypes, owing to the continuous emergence and evolution of the virus. In Nigeria, molecular characterization of NDV is generally very scanty and majorly focuses on the amplification of the partial F gene for genotype assignment. However, with the introduction of the most objective NDV genotyping criteria which utilize complete fusion protein coding sequences in phylogenetic taxonomy, the enormous genetic diversity of the virus in Nigeria became very conspicuous. In this review, we examine the current ecological distribution of various NDV genotypes in Nigeria based on the available complete fusion protein nucleotide sequences (1662 bp) in the NCBI database. We then discuss the challenges of ND control as a result of the wide genetic distance between the currently circulating NDV isolates and the commonest vaccines used to combat the disease in the country. Finally, we suggest future directions in the war against the economically devastating ND in Nigeria.
Collapse
|
13
|
Xiang B, You R, Kang Y, Xie P, Zhu W, Sun M, Gao P, Li Y, Ren T. Host immune responses of pigeons infected with Newcastle disease viruses isolated from pigeons. Microb Pathog 2018; 127:131-137. [PMID: 30508624 DOI: 10.1016/j.micpath.2018.11.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/05/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Newcastle disease (ND), affecting over 250 bird species, is caused by the Newcastle disease virus (NDV). ND is one of the leading causes of morbidity and mortality in pigeons. Most studies investigating NDV in pigeons have focused on the epidemiology and pathogenicity of the virus. However, the host immune responses in pigeons infected with NDVs remains largely unclear. In this study, we investigated the host immune responses in pigeons infected with two NDV stains, a pigeon paramyxovirus type 1(PPMV-1) strain, GZH14, and a genotype II virus, KP08. Although no mortality was observed upon infection with either virus, obvious neurological effects were observed in the GZH14-infected pigeons but not in the KP08-infected pigeons. Both viruses could replicate in the examined tissues, namely brain, lung, spleen, trachea, kidney, and bursa of Fabricius. The expression level of RIG-I, IL-6, IL-1β, CCL5, and IL-8 were up-regulated by both viruses in the brain, lung and spleen at 3 and 7 days post-infection. Notably, these proinflammatory cytokines and chemokines showed more intense expression in the brain, when induced by the GZH14 strain than with the KP08 strain. These results indicate that the intense inflammatory responses induced by PPMV-1 in the brain may be a critical determinant of neurological symptoms in pigeons infected with PPMV-1. Our study provides new insight into the pathogenicity of PPMV-1 in pigeons attributable to the host immune responses.
Collapse
Affiliation(s)
- Bin Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Renrong You
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Yinfeng Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Peng Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Wenxian Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Minhua Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Pei Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Yaling Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China.
| |
Collapse
|