1
|
Ghermezian B, Namavari M, Abdi-Hachesoo B, Mohammadi A, Hayati M, Bootorabi Z, Khabazan Z, Dabiri F, Rajablou H. Growth and replication of infectious bursal disease virus in the fish cell line as an experimental vaccine. Res Vet Sci 2024; 174:105293. [PMID: 38754221 DOI: 10.1016/j.rvsc.2024.105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Recently, several attempts have been made to replace egg-based with cell-based vaccines to prevent and control Infectious Bursal Disease Virus (IBDV). This study aimed to evaluate a new fish cell line (M99) for culturing and replicating IBDV. After observing complete cytopathic effects (CPE) on the M99 cell line, virus titers were determined using the TCID50 test, and the presence of the virus was confirmed using an RT-PCR test. Subsequently, 135 broiler chickens (14 days old) were randomly divided into three equal groups for immune response measurements: G1: immunized with a commercial vaccine, G2: immunized with an experimental vaccine, and G3: control. Antibody responses, bursal index, and histopathological evaluations were examined on different days after immunization. Based on the results, CPE of the virus was noticeable from the first passage, becoming complete by the third passage. The infectious titer of the virus was log106.9. Antibody titer measured 21 days after immunization in both vaccinated groups were significantly differed from the control group (p < 0.05). The results obtained from examining the bursal index and histopathological evaluations showed no significant difference between the studied groups at different times. Overall, this research is the first report on the successful cultivation of infectious bursal virus on a permanent cell line of fish origin, with the advantages of tolerance to a wide temperature range (26-40 degrees Celsius). Therefore, this cell line has potential for use to attenuate, cultivate, and adapt other pathogens to cold temperatures in future studies.
Collapse
Affiliation(s)
- Babak Ghermezian
- Avian Diseases Research Center, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Namavari
- Razi Serum and Vaccine Research Institute, Agricultural Research, Education and Extension Organization, Shiraz, Iran.
| | - Bahman Abdi-Hachesoo
- Avian Diseases Research Center, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Masoumeh Hayati
- Razi Serum and Vaccine Research Institute, Agricultural Research, Education and Extension Organization, Shiraz, Iran
| | - Zahra Bootorabi
- Razi Serum and Vaccine Research Institute, Agricultural Research, Education and Extension Organization, Shiraz, Iran
| | - Zahra Khabazan
- Razi Serum and Vaccine Research Institute, Agricultural Research, Education and Extension Organization, Shiraz, Iran
| | - Fatemeh Dabiri
- Razi Serum and Vaccine Research Institute, Agricultural Research, Education and Extension Organization, Shiraz, Iran
| | - Hadi Rajablou
- Avian Diseases Research Center, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Molinet A, Courtillon C, Bougeard S, Keita A, Grasland B, Eterradossi N, Soubies S. Infectious bursal disease virus: predicting viral pathotype using machine learning models focused on early changes in total blood cell counts. Vet Res 2023; 54:101. [PMID: 37904195 PMCID: PMC10614337 DOI: 10.1186/s13567-023-01222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/27/2023] [Indexed: 11/01/2023] Open
Abstract
Infectious bursal disease (IBD) is an avian viral disease caused in chickens by infectious bursal disease virus (IBDV). IBDV strains (Avibirnavirus genus, Birnaviridae family) exhibit different pathotypes, for which no molecular marker is available yet. The different pathotypes, ranging from sub-clinical to inducing immunosuppression and high mortality, are currently determined through a 10-day-long animal experiment designed to compare mortality and clinical score of the uncharacterized strain with references strains. Limits of this protocol lie within standardization and the extensive use of animal experimentation. The aim of this study was to establish a predictive model of viral pathotype based on a minimum number of early parameters measured during infection, allowing faster pathotyping of IBDV strains with improved ethics. We thus measured, at 2 and 4 days post-infection (dpi), the blood concentrations of various immune and coagulation related cells, the uricemia and the infectious viral load in the bursa of Fabricius of chicken infected under standardized conditions with a panel of viruses encompassing the different pathotypes of IBDV. Machine learning algorithms allowed establishing a predictive model of the pathotype based on early changes of the blood cell formula, whose accuracy reached 84.1%. Its accuracy to predict the attenuated and strictly immunosuppressive pathotypes was above 90%. The key parameters for this model were the blood concentrations of B cells, T cells, monocytes, granulocytes, thrombocytes and erythrocytes of infected chickens at 4 dpi. This predictive model could be a second option to traditional IBDV pathotyping that is faster, and more ethical.
Collapse
Affiliation(s)
- Annonciade Molinet
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France
| | - Céline Courtillon
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France
| | - Stéphanie Bougeard
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France
| | - Alassane Keita
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France
| | - Béatrice Grasland
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France.
| | - Nicolas Eterradossi
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France
| | - Sébastien Soubies
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France
- INRAE-ENVT, UMR 1225 IHAP, 23 Chemin Des Capelles, 31076, Toulouse CEDEX 3, France
| |
Collapse
|
3
|
Huang Y, Shu G, Huang C, Han J, Li J, Chen H, Chen Z. Characterization and pathogenicity of a novel variant infectious bursal disease virus in China. Front Microbiol 2023; 13:1039259. [PMID: 37008302 PMCID: PMC10064860 DOI: 10.3389/fmicb.2022.1039259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/30/2022] [Indexed: 03/19/2023] Open
Abstract
Infectious bursal disease (IBD) is a highly epidemic and immunosuppressive disease of 3- to 6-week-old chicks caused by infectious bursal disease virus (IBDV). Since 2017, there has been a notable increase in the isolation rates of novel variant IBDV strains in China, of which characteristic amino acid residues were different from those of early antigen variants. In this study, one IBDV strain was isolated from a farm with suspected IBD outbreak in Shandong Province, China, which was designated LY21/2. The strain LY21/2 could replicate in MC38 cells with previous culture adaption in SPF chick embryos. Phylogenetic analysis revealed that LY21/2 formed one branch with novel variant IBDVs and shared 96.8–98.6% nucleotide sequence identity with them. Moreover, LY21/2 serving as the major parent underwent the recombination event of a variant strain (19D69), while the minor parent was a very virulent strain (Harbin-1). SPF chicks inoculated with LY21/2 showed no gross clinic symptom, whereas bursal atrophy was exhibited and apoptosis was occurred in 55.21% of bursal cells. The results of histopathology and immunohistochemical staining showed that lymphocyte depletion and connective tissue hyperplasia and IBDV antigen-positive cells were observed in the bursa of LY21/2-infected chicks. Besides, DNA fragmentation was detected in the LY21/2-infected bursal tissue section by TUNEL assay. Collectivtely, these data presented analysis and evaluation of the genetic characteristics and pathogenicity of a novel variant IBDV strain. This study may help in the development of biosafety strategies for the prevention and control of IBDV in poultry.
Collapse
Affiliation(s)
- Yuanling Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultral Science (CAAS), Shanghai, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Gang Shu,
| | - Cong Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultral Science (CAAS), Shanghai, China
| | - Jingyi Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jia Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultral Science (CAAS), Shanghai, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultral Science (CAAS), Shanghai, China
- Hongjun Chen,
| | - Zongyan Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultral Science (CAAS), Shanghai, China
- Zongyan Chen,
| |
Collapse
|
4
|
Cubas-Gaona LL, Courtillon C, Briand FX, Cotta H, Bougeard S, Hirchaud E, Leroux A, Blanchard Y, Keita A, Amelot M, Eterradossi N, Tatár-Kis T, Kiss I, Cazaban C, Grasland B, Soubies SM. High antigenic diversity of serotype 1 infectious bursal disease virus revealed by antigenic cartography. Virus Res 2023; 323:198999. [PMID: 36379388 PMCID: PMC10194283 DOI: 10.1016/j.virusres.2022.198999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/14/2022]
Abstract
The antigenic characterization of IBDV, a virus that causes an immunosuppressive disease in young chickens, has been historically addressed using cross virus neutralization (VN) assay and antigen-capture enzyme-linked immunosorbent (AC-ELISA). However, VN assay has been usually carried out either in specific antibody negative embryonated eggs, for non-cell culture adapted strains, which is tedious, or on chicken embryo fibroblasts (CEF), which requires virus adaptation to cell culture. AC-ELISA has provided crucial information about IBDV antigenicity, but this information is limited to the epitopes included in the tested panel with a lack of information of overall antigenic view. The present work aimed at overcoming those technical limitations and providing an extensive antigenic landscape based on original cross VN assays employing primary chicken B cells, where no previous IBDV adaptation is required. Sixteen serotype 1 IBDV viruses, comprising both reference strains and documented antigenic variants were tested against eleven chicken post-infectious sera. The VN data were analysed by antigenic cartography, a method which enables reliable high-resolution quantitative and visual interpretation of large binding assay datasets. The resulting antigenic cartography revealed i) the existence of several antigenic clusters of IBDV, ii) high antigenic relatedness between some genetically unrelated viruses, iii) a highly variable contribution to global antigenicity of previously identified individual epitopes and iv) broad reactivity of chicken sera raised against antigenic variants. This study provides an overall view of IBDV antigenic diversity. Implementing this approach will be instrumental to follow the evolution of IBDV antigenicity and control the disease.
Collapse
Affiliation(s)
- Liliana L Cubas-Gaona
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), OIE reference Laboratory for Infectious bursal disease virus, French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France; Science and Investigation Department, Ceva Santé Animale, BP 126, Libourne Cedex 33501, France.
| | - Céline Courtillon
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), OIE reference Laboratory for Infectious bursal disease virus, French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Francois-Xavier Briand
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), OIE reference Laboratory for Infectious bursal disease virus, French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Higor Cotta
- Science and Investigation Department, Ceva Santé Animale, BP 126, Libourne Cedex 33501, France
| | - Stephanie Bougeard
- Epidemiology, Animal Health and Welfare Unit (EPISABE), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Edouard Hirchaud
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Aurélie Leroux
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Yannick Blanchard
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Alassane Keita
- Experimental Poultry Unit (SELEAC), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Michel Amelot
- Experimental Poultry Unit (SELEAC), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Nicolas Eterradossi
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), OIE reference Laboratory for Infectious bursal disease virus, French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Tímea Tatár-Kis
- Scientific Support and Investigation Unit, Ceva-Phylaxia Co. Ltd., Ceva Animal Health, 5 Szallas utca, Budapest, Hungary
| | - Istvan Kiss
- Scientific Support and Investigation Unit, Ceva-Phylaxia Co. Ltd., Ceva Animal Health, 5 Szallas utca, Budapest, Hungary
| | - Christophe Cazaban
- Science and Investigation Department, Ceva Santé Animale, BP 126, Libourne Cedex 33501, France
| | - Béatrice Grasland
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), OIE reference Laboratory for Infectious bursal disease virus, French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Sébastien Mathieu Soubies
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), OIE reference Laboratory for Infectious bursal disease virus, French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| |
Collapse
|
5
|
Reddy VRAP, Nazki S, Asfor A, Broadbent AJ. An Infectious Bursal Disease Virus (IBDV) Reverse Genetics Rescue System and Neutralization Assay in Chicken B Cells. Curr Protoc 2023; 3:e639. [PMID: 36622206 PMCID: PMC10108048 DOI: 10.1002/cpz1.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Infectious bursal disease virus (IBDV) is a major threat to the productivity of the poultry industry due to morbidity, mortality, and immunosuppression that exacerbates secondary infections and reduces the efficacy of vaccination programs. Field strains of IBDV have a preferred tropism for chicken B cells, the majority of which reside in the bursa of Fabricius (BF). IBDV adaptation to adherent cell culture is associated with mutations altering amino acids in the hypervariable region (HVR) of the capsid protein, which affects immunogenicity and virulence. Until recently, this has limited both the application of reverse genetics systems for engineering molecular clones, and the use of in vitro neutralization assays, to cell-culture-adapted strains of IBDV. Here, we describe the rescue of molecular clones of IBDV containing the HVR from diverse field strains, along with a neutralization assay to quantify antibody responses against the rescued viruses, both using chicken B cells. These methods are readily adaptable to any laboratory with molecular biology expertise and negate the need to obtain wild-type strains. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: A chicken B-cell rescue system for IBDV Basic Protocol 2: A chicken B-cell neutralization assay for IBDV.
Collapse
Affiliation(s)
| | | | - Amin Asfor
- The Pirbright Institute, Woking, UK.,Department of Comparative Biomedical Sciences, Section Infection and Immunity, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK
| | - Andrew J Broadbent
- The Pirbright Institute, Woking, UK.,Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| |
Collapse
|
6
|
Evaluating the Breadth of Neutralizing Antibody Responses Elicited by Infectious Bursal Disease Virus Genogroup A1 Strains Using a Novel Chicken B-Cell Rescue System and Neutralization Assay. J Virol 2022; 96:e0125522. [PMID: 36069547 PMCID: PMC9517715 DOI: 10.1128/jvi.01255-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Eight infectious bursal disease virus (IBDV) genogroups have been identified based on the sequence of the capsid hypervariable region (HVR) (A1 to A8). Given reported vaccine failures, there is a need to evaluate the ability of vaccines to neutralize the different genogroups. To address this, we used a reverse genetics system and the chicken B-cell line DT40 to rescue a panel of chimeric IBDVs and perform neutralization assays. Chimeric viruses had the backbone of a lab-adapted strain (PBG98) and the HVRs from diverse field strains as follows: classical F52-70 (A1), U.S. variant Del-E (A2), Chinese variant SHG19 (A2), very virulent UK661 (A3), M04/09 distinct (A4), Italian ITA-04 (A6), and Australian variant Vic-01/94 (A8). Rescued viruses showed no substitutions at amino acid positions 253, 284, or 330, previously found to be associated with cell-culture adaptation. Sera from chickens inoculated with wild-type (wt) (F52-70) or vaccine (228E) A1 strains had the highest mean virus neutralization (VN) titers against the A1 virus (log2 15.4 and 12.7) and the lowest against A2 viruses (log2 7.4 to 7.9; P = 0.0001 to 0.0274), consistent with A1 viruses being most antigenically distant from A2 strains, which correlated with the extent of differences in the predicted HVR structure. VN titers against the other genogroups ranged from log2 9.3 to 13.3, and A1 strains were likely more closely antigenically related to genogroups A3 and A4 than A6 and A8. Our data are consistent with field observations and validate the new method, which can be used to screen future vaccine candidates for breadth of neutralizing antibodies and evaluate the antigenic relatedness of different genogroups. IMPORTANCE There is a need to evaluate the ability of vaccines to neutralize diverse IBDV genogroups and to better understand the relationship between HVR sequence, structure, and antigenicity. Here, we used a chicken B-cell line to rescue a panel of chimeric IBDVs with the HVR from seven diverse IBDV field strains and to conduct neutralization assays and protein modeling. We evaluated the ability of sera from vaccinated or infected birds to neutralize the different genogroups. Our novel chicken B-cell rescue system and neutralization assay can be used to screen IBDV vaccine candidates, platforms, and regimens for the breadth of neutralizing antibody responses elicited, evaluate the antigenic relatedness of diverse IBDV strains, and when coupled with structural modeling, elucidate immunodominant and conserved epitopes to strategically design novel IBDV vaccines in the future.
Collapse
|
7
|
Courtillon C, Allée C, Amelot M, Keita A, Bougeard S, Härtle S, Rouby JC, Eterradossi N, Soubies SM. Blood B Cell Depletion Reflects Immunosuppression Induced by Live-Attenuated Infectious Bursal Disease Vaccines. Front Vet Sci 2022; 9:871549. [PMID: 35558891 PMCID: PMC9087897 DOI: 10.3389/fvets.2022.871549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Immunosuppression in poultry production is a recurrent problem worldwide, and one of the major viral immunosuppressive agents is Infectious Bursal Disease Virus (IBDV). IBDV infections are mostly controlled by using live-attenuated vaccines. Live-attenuated Infectious Bursal Disease (IBD) vaccine candidates are classified as “mild,” “intermediate,” “intermediate-plus” or “hot” based on their residual immunosuppressive properties. The immunosuppression protocol described by the European Pharmacopoeia (Ph. Eur.) uses a lethal Newcastle Disease Virus (NDV) infectious challenge to measure the interference of a given IBDV vaccine candidate on NDV vaccine immune response. A Ph. Eur.-derived protocol was thus implemented to quantify immunosuppression induced by one mild, two intermediate, and four intermediate-plus live-attenuated IBD vaccines as well as a pathogenic viral strain. This protocol confirmed the respective immunosuppressive properties of those vaccines and virus. In the search for a more ethical alternative to Ph. Eur.-based protocols, two strategies were explored. First, ex vivo viral replication of those vaccines and the pathogenic strain in stimulated chicken primary bursal cells was assessed. Replication levels were not strictly correlated to immunosuppression observed in vivo. Second, changes in blood leukocyte counts in chicks were monitored using a Ph. Eur. - type protocol prior to lethal NDV challenge. In case of intermediate-plus vaccines, the drop in B cells counts was more severe. Counting blood B cells may thus represent a highly quantitative, faster, and ethical strategy than NDV challenge to assess the immunosuppression induced in chickens by live-attenuated IBD vaccines.
Collapse
Affiliation(s)
- Céline Courtillon
- Ploufragan-Plouzané-Niort Laboratory, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), VIPAC Unit, Ploufragan, France
- *Correspondence: Céline Courtillon
| | - Chantal Allée
- Ploufragan-Plouzané-Niort Laboratory, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), VIPAC Unit, Ploufragan, France
| | - Michel Amelot
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), SELEAC Service, Ploufragan, France
| | - Alassane Keita
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), SELEAC Service, Ploufragan, France
| | - Stéphanie Bougeard
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), EPISABE Unit, Ploufragan, France
| | - Sonja Härtle
- Ludwig-Maximilians-Universität München, Veterinärwissenschaftliches Department, München, Germany
| | - Jean-Claude Rouby
- French Agency for Veterinary Medicinal Products (ANMV), French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Javené, France
| | - Nicolas Eterradossi
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Management Department, Ploufragan, France
| | - Sebastien Mathieu Soubies
- Ploufragan-Plouzané-Niort Laboratory, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), VIPAC Unit, Ploufragan, France
| |
Collapse
|
8
|
Marek's disease virus prolongs survival of primary chicken B-cells by inducing a senescence-like phenotype. PLoS Pathog 2021; 17:e1010006. [PMID: 34673841 PMCID: PMC8562793 DOI: 10.1371/journal.ppat.1010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/02/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells. Upon MDV entry via the respiratory tract, B-cells are among the first cells to be infected in the lung and allow an efficient amplification of the virus. B-cells ensure the transmission of the virus to activated T-cells in which it replicates and ultimately transforms CD4-positive T-cells. Although playing a pivotal role in the MDV life cycle, the response of B-cells to MDV is currently not fully understood. Here, by using an in vitro infection model of primary bursal B-cells, we show that MDV infection leads to a prolonged B-cell survival resulting from decreased cell proliferation, protection from apoptosis and activation of autophagy. Our study provides new insights into the B-cell response to MDV infection, demonstrating that MDV triggers a senescence-like phenotype in B-cells that could potentiate their role in MDV pathogenesis.
Collapse
|
9
|
Cubas-Gaona LL, Flageul A, Courtillon C, Briand FX, Contrant M, Bougeard S, Lucas P, Quenault H, Leroux A, Keita A, Amelot M, Grasland B, Blanchard Y, Eterradossi N, Brown PA, Soubies SM. Genome Evolution of Two Genetically Homogeneous Infectious Bursal Disease Virus Strains During Passages in vitro and ex vivo in the Presence of a Mutagenic Nucleoside Analog. Front Microbiol 2021; 12:678563. [PMID: 34177862 PMCID: PMC8226269 DOI: 10.3389/fmicb.2021.678563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The avibirnavirus infectious bursal disease virus (IBDV) is responsible for a highly contagious and sometimes lethal disease of chickens (Gallus gallus). IBDV genetic variation is well-described for both field and live-attenuated vaccine strains, however, the dynamics and selection pressures behind this genetic evolution remain poorly documented. Here, genetically homogeneous virus stocks were generated using reverse genetics for a very virulent strain, rvv, and a vaccine-related strain, rCu-1. These viruses were serially passaged at controlled multiplicities of infection in several biological systems, including primary chickens B cells, the main cell type targeted by IBDV in vivo. Passages were also performed in the absence or presence of a strong selective pressure using the antiviral nucleoside analog 7-deaza-2'-C-methyladenosine (7DMA). Next Generation Sequencing (NGS) of viral genomes after the last passage in each biological system revealed that (i) a higher viral diversity was generated in segment A than in segment B, regardless 7DMA treatment and viral strain, (ii) diversity in segment B was increased by 7DMA treatment in both viruses, (iii) passaging of IBDV in primary chicken B cells, regardless of 7DMA treatment, did not select cell-culture adapted variants of rvv, preserving its capsid protein (VP2) properties, (iv) mutations in coding and non-coding regions of rCu-1 segment A could potentially associate to higher viral fitness, and (v) a specific selection, upon 7DMA addition, of a Thr329Ala substitution occurred in the viral polymerase VP1. The latter change, together with Ala270Thr change in VP2, proved to be associated with viral attenuation in vivo. These results identify genome sequences that are important for IBDV evolution in response to selection pressures. Such information will help tailor better strategies for controlling IBDV infection in chickens.
Collapse
Affiliation(s)
- Liliana L Cubas-Gaona
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Alexandre Flageul
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Céline Courtillon
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Francois-Xavier Briand
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Maud Contrant
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Stephanie Bougeard
- Epidemiology, Animal Health and Welfare Unit (EPISABE), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Pierrick Lucas
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Hélène Quenault
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Aurélie Leroux
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Alassane Keita
- Experimental Poultry Unit (SELEAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Michel Amelot
- Experimental Poultry Unit (SELEAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Béatrice Grasland
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Yannick Blanchard
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Nicolas Eterradossi
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Paul Alun Brown
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Sébastien Mathieu Soubies
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| |
Collapse
|
10
|
Ex vivo rescue of recombinant very virulent IBDV using a RNA polymerase II driven system and primary chicken bursal cells. Sci Rep 2020; 10:13298. [PMID: 32764663 PMCID: PMC7411059 DOI: 10.1038/s41598-020-70095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/17/2020] [Indexed: 02/04/2023] Open
Abstract
Infectious Bursal Disease Virus (IBDV), a member of the Birnaviridae family, causes an immunosuppressive disease in young chickens. Although several reverse genetics systems are available for IBDV, the isolation of most field-derived strains, such as very virulent IBDV (vvIBDV) and their subsequent rescue, has remained challenging due to the lack of replication of those viruses in vitro. Such rescue required either the inoculation of animals, embryonated eggs, or the introduction of mutations in the capsid protein (VP2) hypervariable region (HVR) to adapt the virus to cell culture, the latter option concomitantly altering its virulence in vivo. We describe an improved ex vivo IBDV rescue system based on the transfection of an avian cell line with RNA polymerase II-based expression vectors, combined with replication on primary chicken bursal cells, the main cell type targeted in vivo of IBDV. We validated this system by rescuing to high titers two recombinant IBDV strains: a cell-culture adapted attenuated strain and a vvIBDV. Sequencing of VP2 HVR confirmed the absence of unwanted mutations that may alter the biological properties of the recombinant viruses. Therefore, this approach is efficient, economical, time-saving, reduces animal suffering and can be used to rescue other non-cell culture adapted IBDV strains.
Collapse
|
11
|
Wang Q, Ou C, Wei X, Yu Y, Jiang J, Zhang Y, Ma J, Liu X, Zhang G. CC chemokine ligand 19 might act as the main bursal T cell chemoattractant factor during IBDV infection. Poult Sci 2019; 98:688-694. [PMID: 30239915 DOI: 10.3382/ps/pey435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022] Open
Abstract
Infectious bursa disease virus (IBDV) pathogenesis is characterized by increased numbers of T cells and decreased numbers of B cells in the bursa. Currently, little is about the key factor that affects T migration into bursa. In humans, CC chemokine ligand 19 (CCL19) recruits monocytes and neutrophils and is usually involved in various inflammatory disorders. The aim of this study was to assess the roles of CCL19 in driving peripheral blood cells infiltration into bursa of Fabricius of chickens infected with IBDV. Bursal samples were collected from chickens of the infection group and the control group on day 1, 3, 5, and 7 post infection (dpi) with IBDV. The mRNA or protein levels of ccl19 and ccr7 genes in bursae were determined by real-time PCR and immunohistochemistry (IHC) methods. Moreover, an in vitro chemotaxis assay was performed to evaluate the chemotaxis ability of CCL19 and bursal total protein. The results have displayed that the mRNA levels of ccl19 were significantly increased on 1, 3, 5, and 7 dpi in the infection group. The highest value amounted to 73.4-fold of the control group. Also, the mRNA levels of CCR7, the receptor of CCL19, began to increase on 3 dpi and reached to the highest value of 206.3-fold on 5 dpi after IBDV infection. Then the gene expression of CCR7 in bursae of the infection group returned to the normal level. IHC results of CCL19 protein level accorded with the mRNA levels of CCL19, with the highest value on 5 dpi. Then, in vitro chemotaxis test demonstrated that the total bursal protein had the ability of recruiting peripheral white blood cells (PWBC) and the migration percentage was a little higher than that of the blank control with only basal medium (P < 0.05). Taken together, these data suggest that CCL19 acts as a chicken PWBC chemotactic factor and facilitate the infiltration of PWBC (especially T cells) into the bursae after IBDV infection.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 451000, Henan, China.,Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Changbo Ou
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Xingyou Liu
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 451000, Henan, China
| |
Collapse
|
12
|
Tomás G, Marandino A, Courtillon C, Amelot M, Keita A, Pikula A, Hernández M, Hernández D, Vagnozzi A, Panzera Y, Domańska-Blicharz K, Eterradossi N, Pérez R, Soubies SM. Antigenicity, pathogenicity and immunosuppressive effect caused by a South American isolate of infectious bursal disease virus belonging to the "distinct" genetic lineage. Avian Pathol 2019; 48:245-254. [PMID: 30663339 DOI: 10.1080/03079457.2019.1572867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Infectious bursal disease virus (IBDV) is the causative agent of a highly contagious immunosuppressive disease affecting young chickens. The recently described "distinct IBDV" (dIBDV) genetic lineage encompasses a group of worldwide distributed strains that share conserved genetic characteristics in both genome segments making them unique within IBDV strains. Phenotypic characterization of these strains is scarce and limited to Asiatic and European strains collected more than 15 years ago. The present study aimed to assess the complete and comprehensive phenotypic characterization of a recently collected South American dIBDV strain (1/chicken/URY/1302/16). Genetic analyses of both partial genome segments confirmed that this strain belongs to the dIBDV genetic lineage and that it is not a reassortant. Antigenic analysis with monoclonal antibodies indicated that this strain has a particular antigenic profile, similar to that obtained in a dIBDV strain from Europe (80/GA), which differs from those previously found in the traditional classic, variant and very virulent strains. Chickens infected with the South American dIBDV strain showed subclinical infections but had a marked bursal atrophy. Further analysis using Newcastle disease virus-immunized chickens, previously infected with the South American and European dIBDV strains, demonstrated their severe immunosuppressive effect. These results indicate that dIBDV strains currently circulating in South America can severely impair the immune system of chickens, consequently affecting the local poultry industry. Our study provides new insights into the characteristics and variability of this global genetic lineage and is valuable to determine whether specific control measures are required for the dIBDV lineage. Research Highlights A South American strain of the dIBDV lineage was phenotypically characterized. The strain produced subclinical infections with a marked bursal atrophy. Infected chickens were severely immunosuppressed. The dIBDV strains are antigenically divergent from other IBDV lineages.
Collapse
Affiliation(s)
- Gonzalo Tomás
- a Sección Genética Evolutiva, Departamento de Biología Animal, Facultad de Ciencias , Instituto de Biología, Universidad de la República Montevideo , Uruguay
| | - Ana Marandino
- a Sección Genética Evolutiva, Departamento de Biología Animal, Facultad de Ciencias , Instituto de Biología, Universidad de la República Montevideo , Uruguay
| | - Céline Courtillon
- b Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC) , French Agency for Food, Environmental and Occupational Health Safety (ANSES) Ploufragan , France
| | - Michel Amelot
- b Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC) , French Agency for Food, Environmental and Occupational Health Safety (ANSES) Ploufragan , France
| | - Alassane Keita
- b Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC) , French Agency for Food, Environmental and Occupational Health Safety (ANSES) Ploufragan , France
| | - Anna Pikula
- c Department of Poultry Diseases , National Veterinary Research Institute Pulawy , Poland
| | - Martín Hernández
- a Sección Genética Evolutiva, Departamento de Biología Animal, Facultad de Ciencias , Instituto de Biología, Universidad de la República Montevideo , Uruguay
| | - Diego Hernández
- a Sección Genética Evolutiva, Departamento de Biología Animal, Facultad de Ciencias , Instituto de Biología, Universidad de la República Montevideo , Uruguay
| | - Ariel Vagnozzi
- d Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria Buenos Aires , Argentina
| | - Yanina Panzera
- a Sección Genética Evolutiva, Departamento de Biología Animal, Facultad de Ciencias , Instituto de Biología, Universidad de la República Montevideo , Uruguay
| | | | - Nicolas Eterradossi
- b Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC) , French Agency for Food, Environmental and Occupational Health Safety (ANSES) Ploufragan , France
| | - Ruben Pérez
- a Sección Genética Evolutiva, Departamento de Biología Animal, Facultad de Ciencias , Instituto de Biología, Universidad de la República Montevideo , Uruguay
| | - Sébastien Mathieu Soubies
- b Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC) , French Agency for Food, Environmental and Occupational Health Safety (ANSES) Ploufragan , France
| |
Collapse
|
13
|
Dulwich KL, Asfor AS, Gray AG, Nair V, Broadbent AJ. An Ex Vivo Chicken Primary Bursal-cell Culture Model to Study Infectious Bursal Disease Virus Pathogenesis. J Vis Exp 2018. [PMID: 30346401 PMCID: PMC6235420 DOI: 10.3791/58489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a birnavirus of economic importance to the poultry industry. The virus infects B cells, causing morbidity, mortality, and immunosuppression in infected birds. In this study, we describe the isolation of chicken primary bursal cells from the bursa of Fabricius, the culture and infection of the cells with IBDV, and the quantification of viral replication. The addition of chicken CD40 ligand significantly increased cell proliferation fourfold over six days of culture and significantly enhanced cell viability. Two strains of IBDV, a cell-culture adapted strain, D78, and a very virulent strain, UK661, replicated well in the ex vivo cell cultures. This model will be of use in determining how cells respond to IBDV infection and will permit a reduction in the number of infected birds used in IBDV pathogenesis studies. The model can also be expanded to include other viruses and could be applied to different species of birds.
Collapse
|
14
|
Dulwich KL, Giotis ES, Gray A, Nair V, Skinner MA, Broadbent AJ. Differential gene expression in chicken primary B cells infected ex vivo with attenuated and very virulent strains of infectious bursal disease virus (IBDV). J Gen Virol 2017; 98:2918-2930. [PMID: 29154745 DOI: 10.1099/jgv.0.000979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Infectious bursal disease virus (IBDV) belongs to the family Birnaviridae and is economically important to the poultry industry worldwide. IBDV infects B cells in the bursa of Fabricius (BF), causing immunosuppression and morbidity in young chickens. In addition to strains that cause classical Gumboro disease, the so-called 'very virulent' (vv) strain, also in circulation, causes more severe disease and increased mortality. IBDV has traditionally been controlled through the use of live attenuated vaccines, with attenuation resulting from serial passage in non-lymphoid cells. However, the factors that contribute to the vv or attenuated phenotypes are poorly understood. In order to address this, we aimed to investigate host cell-IBDV interactions using a recently described chicken primary B-cell model, where chicken B cells are harvested from the BF and cultured ex vivo in the presence of chicken CD40L. We demonstrated that these cells could support the replication of IBDV when infected ex vivo in the laboratory. Furthermore, we evaluated the gene expression profiles of B cells infected with an attenuated strain (D78) and a very virulent strain (UK661) by microarray. We found that key genes involved in B-cell activation and signalling (TNFSF13B, CD72 and GRAP) were down-regulated following infection relative to mock, which we speculate could contribute to IBDV-mediated immunosuppression. Moreover, cells responded to infection by expressing antiviral type I IFNs and IFN-stimulated genes, but the induction was far less pronounced upon infection with UK661, which we speculate could contribute to its virulence.
Collapse
Affiliation(s)
- Katherine L Dulwich
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Efstathios S Giotis
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Alice Gray
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
| | | | - Michael A Skinner
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|