1
|
Saushkin NY, Samsonova JV, Presnova GV, Rubtsova MY, Osipov AP. Multiplex gradient immunochip for detection of post-vaccinal antibodies in poultry. Vet Res Commun 2024; 48:2805-2811. [PMID: 38795252 DOI: 10.1007/s11259-024-10424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/22/2024] [Indexed: 05/27/2024]
Abstract
Multiplex analysis as an immunochip-in-a well format for simultaneous detection of post-vaccinal antibodies to three poultry infections (Newcastle disease, infectious bronchitis and bursal disease) in one chicken sera was developed. The immunochip had a microarray format printed on the bottom of a standard microtiter plate well and consisted of 36 microspots (d = 400 μm each) with three lines of viral antigens absorbed in a gradient of five decreasing concentrations. Optimization of assay conditions revealed the necessity of careful choice of the reaction buffer due to the high tendency of chicken IgY to exhibit unspecific binding. The best results were obtained for PBS buffer (pH 6.0) supplied with 0.1% Tween 20. Assay results were visualized by a number of coloured microspots that were correlated with the specific antibody titre in the analysed serum. High (> 8000), medium (3000-8000) or low (1000-3000) antibody titre level for each of three infections could be quickly assessed in one probe visually or with the help of smartphone. ELISA results (antibody titres) and visual gradient immunochip results interpretation (high, medium, low antibody level/titre) for 63 chicken sera with multiple levels of post-vaccinal antibodies against Newcastle disease, infectious bronchitis and bursal disease were in good correlation.
Collapse
Affiliation(s)
| | | | - Galina V Presnova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Maya Yu Rubtsova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
2
|
Liu J, Zhang B, Wang L, Peng J, Wu K, Liu T. The development of droplet-based microfluidic virus detection technology for human infectious diseases. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:971-978. [PMID: 38299435 DOI: 10.1039/d3ay01795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Virus-based human infectious diseases have a significant negative impact on people's health and social development. The need for quick, accurate, and early viral infection detection in preventive medicine is expanding. A microfluidic control is particularly suitable for point-of-care-testing virus diagnosis due to its advantages of low sample consumption, quick detection speed, simple operation, multi-functional integration, small size, and easy portability. It is also thought to have significant development potential and a wide range of application prospects in the research on virus detection technology. In an effort to aid researchers in creating novel microfluidic tools for virus detection, this review highlights recent developments of droplet-based microfluidics in virus detection research and also discusses the challenges and opportunities for rapid virus detection.
Collapse
Affiliation(s)
- Jiayan Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Bingyang Zhang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Li Wang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Jingjie Peng
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Kun Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Zhang F, Shang J, Luo J, Yin X, Yu X, Jiang W, Li J, Yuan L, Hou G, Liu H, Li Y. Development of a recombinase-aided amplification combined with a lateral flow dipstick assay for rapid detection of H7 subtype avian influenza virus. Front Microbiol 2023; 14:1286713. [PMID: 38029110 PMCID: PMC10654746 DOI: 10.3389/fmicb.2023.1286713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Avian influenza viruses (AIV) pose a significant persistent threat to the public health and safety. It is estimated that there have been over 100 outbreaks caused by various H7 subtypes of avian influenza viruses (AIV-H7) worldwide, resulting in over 33 million deaths of poultry. In this study, we developed a recombinase-aided amplification combined with a lateral flow dipstick assay for the detection of hemagglutinin (HA) genes to provide technical support for rapid clinical detection of AIV-H7. The results showed that the assay can complete the reaction within 30 min at a temperature of 39°C. Specificity tests demonstrated that there was no cross-reactivity with other common poultry pathogens, including Newcastle disease virus (NDV) and infections bronchitis virus (IBV). The detection limit of this assay was 1 × 101 copies/μL, while RT-qPCR method was 1 × 101 copies/μL, and RT-PCR was 1 × 102 copies/μL. The κ value of the RT-RAA-LFD and RT-PCR assay in 132 avian clinical samples was 0.9169 (p < 0.001). These results indicated that the developed RT-RAA-LFD assay had good specificity, sensitivity, stability and repeatability and may be used for rapid detection of AIV-H7 in clinical diagnosis.
Collapse
Affiliation(s)
- Fuyou Zhang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jiajing Shang
- China Animal Health and Epidemiology Center, Qingdao, China
- Hebei University of Engineering, Handan, China
| | - Juan Luo
- China Animal Health and Epidemiology Center, Qingdao, China
- Hebei University of Engineering, Handan, China
| | - Xin Yin
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinping Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Liping Yuan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Guangyu Hou
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yang Li
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
4
|
Development and application of a novel triplex protein microarray method for rapid detection of antibodies against avian influenza virus, Newcastle disease virus, and avian infectious bronchitis virus. Arch Virol 2021; 166:1113-1124. [PMID: 33576898 DOI: 10.1007/s00705-021-04962-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Avian influenza virus (AIV), Newcastle disease virus (NDV), and avian infectious bronchitis virus (IBV) inflict immense damage on the global poultry industry annually. Serological diagnostic methods are fundamental for the effective control and prevention of outbreaks caused by these viruses. In this study, a novel triplex protein microarray assay was developed and validated for the rapid and simultaneous visualized detection of antibodies against AIV, NDV, and IBV in chicken sera. The AIV nuclear protein (NP), NDV phosphoprotein (P), and IBV nonstructural protein 5 (nsp5) were produced in a prokaryotic expression system, purified, and immobilized onto an initiator integrated poly(dimethylsiloxane) (iPDMS) film as probes to detect antibodies against these viruses in chicken sera. After optimization of the reaction conditions, no cross-reactivity was detected with infectious bursal disease virus, avian leukosis virus subgroup J and chicken anemia virus antisera. The lowest detectable antibody titers in this assay corresponded to hemagglutination inhibition (HI) titers of 24 and 21 for AIV and NDV, respectively, and to an IDEXX antibody titer of 103 for IBV, using the HI assay and IDEXX commercial ELISA kit as the reference methods. When156 serum samples were tested using the new assay, the HI test and the IBV IDEXX ELISA kit, the assay showed 96.8% (151/156), 97.4% (152/156) and 99.4% (155/156) diagnostic accuracy for detection of AIV, NDV and IBV antibody, respectively. The current study suggests that the newly developed triplex microarray is rapid, sensitive, and specific, providing a viable alternative assay for AIV, NDV, and IBV antibody screening in epidemiological investigations and vaccination evaluations.
Collapse
|
5
|
Li Y, Ye H, Liu M, Song S, Chen J, Cheng W, Yan L. Development and evaluation of a monoclonal antibody-based competitive ELISA for the detection of antibodies against H7 avian influenza virus. BMC Vet Res 2021; 17:64. [PMID: 33531001 PMCID: PMC7852141 DOI: 10.1186/s12917-021-02772-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND H7 subtype avian influenza has caused great concern in the global poultry industry and public health. The conventional serological subtype-specific diagnostics is implemented by hemagglutination inhibition (HI) assay despite lengthy operation time. In this study, an efficient, rapid and high-throughput competitive enzyme-linked immunosorbent assay (cELISA) was developed for detection of antibodies against H7 avian influenza virus (AIV) based on a novel monoclonal antibody specific to the hemagglutinin (HA) protein of H7 AIV. RESULTS The reaction parameters including antigen coating concentration, monoclonal antibody concentration and serum dilution ratio were optimized for H7 antibody detection. The specificity of the cELISA was tested using antisera against H1 ~ H9, H11 ~ H14 AIVs and other avian viruses. The selected cut-off values of inhibition rates for chicken, duck and peacock sera were 30.11, 26.85 and 45.66% by receiver-operating characteristic (ROC) curve analysis, respectively. With HI test as the reference method, the minimum detection limits for chicken, duck and peacock positive serum reached 20, 21 and 2- 1 HI titer, respectively. Compared to HI test, the diagnostic accuracy reached 100, 98.6, and 99.3% for chicken, duck and peacock by testing a total of 400 clinical serum samples, respectively. CONCLUSIONS In summary, the cELISA assay developed in this study provided a reliable, specific, sensitive and species-independent serological technique for rapid detection of H7 antibody, which was applicable for large-scale serological surveillance and vaccination efficacy evaluation programs.
Collapse
Affiliation(s)
- Yuan Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Hongliu Ye
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Meng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Jin Chen
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 People’s Republic of China
| | - Wangkun Cheng
- Nanjing Hongshan Forest Zoo, Nanjing, Jiangsu 210000 People’s Republic of China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095 People’s Republic of China
| |
Collapse
|