1
|
Fandiño S, Gomez-Lucia E, Benítez L, Doménech A. Comparison of Endogenous Alpharetroviruses (ALV-like) across Galliform Species: New Distant Proviruses. Microorganisms 2023; 12:86. [PMID: 38257913 PMCID: PMC10820513 DOI: 10.3390/microorganisms12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The Genus Alpharetrovirus contains viruses pathogenic mainly for chickens, forming the Avian Sarcoma and Leukosis Virus group (ASLV). Cells of most Galliform species, besides chickens, contain genetic elements (endogenous retroviruses, ERVs) that could recombine with other alpharetroviruses or express proteins, complementing defective ASLV, which may successfully replicate and cause disease. However, they are quite unknown, and only ALV-F, from ring-necked pheasants, has been partially published. Upon scrutiny of 53 genomes of different avian species, we found Alpharetrovirus-like sequences only in 12 different Galliformes, including six full-length (7.4-7.6 Kbp) and 27 partial sequences. Phylogenetic studies of the regions studied (LTR, gag, pol, and env) consistently resulted in five almost identical clades containing the same ERVs: Clade I (presently known ASLVs); Clade II (Callipepla spp. ERVs); Clade IIIa (Phasianus colchicus ERVs); Clade IIIb (Alectoris spp. ERVs); and Clade IV (Centrocercus spp. ERVs). The low pol identity scores suggested that each of these Clades may be considered a different species. ORF analysis revealed that putatively encoded proteins would be very similar in length and domains to those of other alpharetroviruses and thus potentially functional. This will undoubtedly contribute to better understanding the biology of defective viruses, especially in wild Galliformes, their evolution, and the danger they may represent for other wild species and the poultry industry.
Collapse
Affiliation(s)
- Sergio Fandiño
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (S.F.); (A.D.)
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain;
- Research Group, “Animal Viruses” of Complutense University of Madrid, 28040 Madrid, Spain
| | - Esperanza Gomez-Lucia
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (S.F.); (A.D.)
- Research Group, “Animal Viruses” of Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain;
- Research Group, “Animal Viruses” of Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Doménech
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (S.F.); (A.D.)
- Research Group, “Animal Viruses” of Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Fandiño S, Gomez-Lucia E, Benítez L, Doménech A. Avian Leukosis: Will We Be Able to Get Rid of It? Animals (Basel) 2023; 13:2358. [PMID: 37508135 PMCID: PMC10376345 DOI: 10.3390/ani13142358] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Avian leukosis viruses (ALVs) have been virtually eradicated from commercial poultry. However, some niches remain as pockets from which this group of viruses may reemerge and induce economic losses. Such is the case of fancy, hobby, backyard chickens and indigenous or native breeds, which are not as strictly inspected as commercial poultry and which have been found to harbor ALVs. In addition, the genome of both poultry and of several gamebird species contain endogenous retroviral sequences. Circumstances that support keeping up surveillance include the detection of several ALV natural recombinants between exogenous and endogenous ALV-related sequences which, combined with the well-known ability of retroviruses to mutate, facilitate the emergence of escape mutants. The subgroup most prevalent nowadays, ALV-J, has emerged as a multi-recombinant which uses a different receptor from the previously known subgroups, greatly increasing its cell tropism and pathogenicity and making it more transmissible. In this review we describe the ALVs, their different subgroups and which receptor they use to infect the cell, their routes of transmission and their presence in different bird collectivities, and the immune response against them. We analyze the different systems to control them, from vaccination to the progress made editing the bird genome to generate mutated ALV receptors or selecting certain haplotypes.
Collapse
Affiliation(s)
- Sergio Fandiño
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Esperanza Gomez-Lucia
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Doménech
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|