1
|
Role of T Cells in Vaccine-Mediated Immunity against Marek’s Disease. Viruses 2023; 15:v15030648. [PMID: 36992357 PMCID: PMC10055809 DOI: 10.3390/v15030648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Marek’s disease virus (MDV), a highly cell-associated oncogenic α-herpesvirus, is the etiological agent of T cell lymphomas and neuropathic disease in chickens known as Marek’s disease (MD). Clinical signs of MD include neurological disorders, immunosuppression, and lymphoproliferative lymphomas in viscera, peripheral nerves, and skin. Although vaccination has greatly reduced the economic losses from MD, the molecular mechanism of vaccine-induced protection is largely unknown. To shed light on the possible role of T cells in immunity induced by vaccination, we vaccinated birds after the depletion of circulating T cells through the IP/IV injection of anti-chicken CD4 and CD8 monoclonal antibodies, and challenged them post-vaccination after the recovery of T cell populations post-treatment. There were no clinical signs or tumor development in vaccinated/challenged birds with depleted CD4+ or CD8+ T cells. The vaccinated birds with a combined depletion of CD4+ and CD8+ T cells, however, were severely emaciated, with atrophied spleens and bursas. These birds were also tumor-free at termination, with no virus particles detected in the collected tissues. Our data indicated that CD4+ and CD8+ T lymphocytes did not play a critical role in vaccine-mediated protection against MDV-induced tumor development.
Collapse
|
2
|
Rogers E, Todd SM, Pierson FW, Kenney SP, Heffron CL, Yugo DM, Matzinger SR, Mircoff E, Ngo I, Kirby C, Jones M, Siegel P, Jobst P, Hall K, Etches RJ, Meng XJ, LeRoith T. CD8 + lymphocytes but not B lymphocytes are required for protection against chronic hepatitis E virus infection in chickens. J Med Virol 2019; 91:1960-1969. [PMID: 31317546 DOI: 10.1002/jmv.25548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis E is an important global disease, causing outbreaks of acute hepatitis in many developing countries and sporadic cases in industrialized countries. Hepatitis E virus (HEV) infection typically causes self-limiting acute hepatitis but can also progress to chronic disease in immunocompromised individuals. The immune response necessary for the prevention of chronic infection is T cell-dependent; however, the arm of cellular immunity responsible for this protection is not currently known. To investigate the contribution of humoral immunity in control of HEV infection and prevention of chronicity, we experimentally infected 20 wild-type (WT) and 18 immunoglobulin knockout (JH-KO) chickens with a chicken strain of HEV (avian HEV). Four weeks postinfection (wpi) with avian HEV, JH-KO chickens were unable to elicit anti-HEV antibody but had statistically significantly lower liver lesion scores than the WT chickens. At 16 wpi, viral RNA in fecal material and liver, and severe liver lesions were undetectable in both groups. To determine the role of cytotoxic lymphocytes in the prevention of chronicity, we infected 20 WT and 20 cyclosporine and CD8+ antibody-treated chickens with the same strain of avian HEV. The CD8 + lymphocyte-depleted, HEV-infected chickens had higher incidences of prolonged fecal viral shedding and statistically significantly higher liver lesion scores than the untreated, HEV-infected birds at 16 wpi. The results indicate that CD8 + lymphocytes are required for viral clearance and reduction of liver lesions in HEV infection while antibodies are not necessary for viral clearance but may contribute to the development of liver lesions in acute HEV infection.
Collapse
Affiliation(s)
- Eda Rogers
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Stephanie Michelle Todd
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Frank William Pierson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Scott P Kenney
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Connie Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Danielle M Yugo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Shannon R Matzinger
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Elena Mircoff
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Irene Ngo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Charles Kirby
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Michaela Jones
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Paul Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Peter Jobst
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Karen Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | | | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
4
|
Kilany W, Dauphin G, Selim A, Tripodi A, Samy M, Sobhy H, VonDobschuetz S, Safwat M, Saad M, Erfan A, Hassan M, Lubroth J, Jobre Y. Protection conferred by recombinant turkey herpesvirus avian influenza (rHVT-H5) vaccine in the rearing period in two commercial layer chicken breeds in Egypt. Avian Pathol 2014; 43:514-23. [PMID: 25245772 DOI: 10.1080/03079457.2014.966302] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The effectiveness of recombinant turkey herpesvirus avian influenza (A/swan/Hungary/4999/2006(H5N1)) clade 2.2 virus (rHVT-H5) vaccine was evaluated in two layer chicken breeds (White Bovans [WB] and Brown Shaver [BS]). One dose of rHVT-H5 vaccine was administered at day 1 and birds were monitored serologically (haemagglutination inhibition test) and virologically for 19 weeks. Maternally-derived antibody and post-vaccination H5 antibody titres were measured using the Chinese (A/Goose/Guangdong/1/96(H5N1)) HA and the Egyptian (A/chicken/Egypt/128s/2012(H5N1)) HA as antigens. The challenge was conducted at 19 weeks of age and on six experimental groups: Groups I (WB) and II (BS), both vaccinated and challenged; Groups III (WB) and IV (BS), both vaccinated but not challenged; Groups V and VI, unvaccinated specific pathogen free chickens, serving respectively as positive and negative controls. The challenge virus was the clade 2.2.1 highly pathogenic avian influenza H5N1 A/chicken/Egypt/128s/2012 at a dose of 10(6) median embryo infective dose. For both breeds, complete maternally-derived antibody waning occurred at the age of 4 weeks. The immune response to rHVT-H5 vaccination was detected from the sixth week. The seroconversion rates for both breeds reached 85.7 to 100% in the eighth week of age. Protection levels of 73.3%, 60% and 0% were respectively recorded in Groups I, II and V. No mortalities occurred in the unchallenged groups. Group I showed superior results for all measured post-challenge parameters. In conclusion, a single rHVT-H5 hatchery vaccination conferred a high level of protection for a relatively extended period. This vaccine could be an important tool for future A/H5N1 prevention/control in endemic countries. Further studies on persistence of immunity beyond 19 weeks, need for booster with inactivated vaccines, breed susceptibility and vaccinal response, and transmissibility are recommended.
Collapse
Affiliation(s)
- Walid Kilany
- a Food and Agriculture Organization of the United Nations, Emergency Center of Transboundary Animal Diseases , Giza , Egypt
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jarosinski KW, Tischer BK, Trapp S, Osterrieder N. Marek's disease virus: lytic replication, oncogenesis and control. Expert Rev Vaccines 2007; 5:761-72. [PMID: 17184215 DOI: 10.1586/14760584.5.6.761] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Marek's disease (MD) is caused by a ubiquitous, lymphotropic alphaherpesvirus, MD virus (MDV). MD has been a major concern in the poultry industry owing to the emergence of increasingly virulent strains over the last few decades that were isolated in the face of comprehensive vaccination. The disease is characterized by a variety of clinical signs; among them are neurological symptoms, chronic wasting and, most notably, the development of multiple lymphomas that manifest as solid tumors in the viscera and musculature. Much work has been devoted to study MD-induced oncogenesis and the genes involved in this process. Among the many genes encoded by MDV, a number have been shown recently to affect the development of tumors in chickens, one protein directly causing transformation of cells (Meq) and another being involved in maintaining transformed cells (vTR). Other MDV gene products modulate and are involved in early lytic in vivo replication, thereby increasing the chance of transformation occurring. In this review, we will summarize specific genes encoded by MDV that are involved in the initiation and/or maintenance of transformation and will focus mostly on current vaccination and control strategies against MD, particularly how modern molecular biological methods may be used to improve strategies to combat the disease in the future.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Cornell University, Department of Microbiology and Immunology, College of Veterinary Medicine, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
7
|
Schat KA, Xing Z. Specific and nonspecific immune responses to Marek's disease virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2000; 24:201-221. [PMID: 10717288 DOI: 10.1016/s0145-305x(99)00073-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Marek's disease (MD) virus (MDV) has provided an important model to study immune responses against a lymphoma-inducing herpesvirus in its natural host. Infection in chickens starts with a lytic infection in B cells, followed by a latent infection in T cells and, in susceptible birds, T cell lymphomas develop. Non-specific and specific immune responses are important for the control of virus infection and subsequent tumor development. Interferon-gamma and nitric oxide are important for the control of virus replication during the lytic phase of infection and are also important to prevent reactivation of MDV replication in latently infected and transformed cells. Cytotoxic T cells (CTLs) are the most important of the specific immune responses in MDV. In addition to antigen-specific CTL against MDV proteins pp38, glycoprotein B (gB), Meq, and ICP4, ICP27-specific CTL can also be detected as early as 6 to 7 days post infection. The epitope for gB recognized by CTLs from P2a (MHC: B(19)B(19)) chickens has been localized to the Eco47III-BamHI (nucleotides 1515-1800) fragment. A proposed model for the interactions of cytokines and immune responses as part of the pathogenesis of MD is discussed.
Collapse
Affiliation(s)
- K A Schat
- Department of Microbiology and Immunology, Unit of Avian Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
9
|
Morimura T, Ohashi K, Sugimoto C, Onuma M. Pathogenesis of Marek's disease (MD) and possible mechanisms of immunity induced by MD vaccine. J Vet Med Sci 1998; 60:1-8. [PMID: 9492353 DOI: 10.1292/jvms.60.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Marek's disease (MD) is a lymphoproliferative disease of chicken, which is characterized by malignant T cell-lymphoma formation. This disease can be effectively prevented by vaccination with attenuated MD virus (MDV), apathogenic MDV or herpesvirus of turkey. MD vaccines are ones of a few vaccines which can prevent virus-induced tumor among mammalian and avian species. To determine the roles of T cell subsets in the protection mechanism, chickens vaccinated with an attenuated MDV (CVI988) were depleted of either CD4+ or CD8+ T cells by neonatal thymectomy and injections of monoclonal antibodies against chicken CD4 or CD8 molecules and then challenged with an oncogenic MDV. These birds were effectively protected from MDV-induced tumors. However, virus titers in CD4+ T cells, which are the main target cells for MDV-latent infection and subsequent transformation, were much higher in CD8-deficient vaccinated chickens than in untreated vaccinated chickens at the early stage of the latent phase. These results suggested that CD8+ T cell responses induced by the MD vaccine are essential for anti-virus but not anti-tumor effects. Here, we will discuss how the attenuated vaccine prevents chickens from lymphoma-formation by an oncogenic MDV.
Collapse
Affiliation(s)
- T Morimura
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|