1
|
Jamil M, Zafar S, Bibi T, Buttar PA, Shal B, Shah K, Din FU, Seo EK, Khan S. Suppression of TLR4/NF-κB signaling by kaurenoic acid in a mice model of monosodium urate crystals-induced acute gout. Arch Biochem Biophys 2025; 765:110317. [PMID: 39864778 DOI: 10.1016/j.abb.2025.110317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
AIM The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)-induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques. This methodology highlighted the efficacy of KA in acute gout attacks offering new approach for gout management. METHODS In-vivo model of acute gout was established in BALB/c mice. Anti-inflammatory and urate-lowering potential was determined through pain behavioral evaluation, biochemical analysis, histological and immunohistochemical assays, radiological assessments, Fourier Transform Infrared (FTIR) analysis, and computational analysis. RESULTS The paw edema, joint thickness, and the frequency and duration of acute gout flare-ups were all significantly (p < 0.001) decreased by the administration of KA. A considerable reversal of inflammation and deterioration was observed in the KA-treated groups in X-ray examination. The FTIR spectroscopy indicated the changes in the molecular makeup of tissues, and modifications of biomolecules including proteins, lipids, and carbohydrates. Histopathological changes showed marked (p < 0.001) improvements in cellular structure of the paw, and inflammatory cell infiltration in the treatment groups. Trichrome staining revealed suppressed collagen deposition, inflammation, and tissue repair in the paw. In paw tissues, the KA therapy up-regulated IκB-α expression while down-regulating toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression. On the other hand, KA therapy greatly increased antioxidants and decreased oxidative stress indicators significantly (p < 0.001). According to Evans's blue permeability analysis, results showed that the treatment groups' vascular permeability was intensely reduced in comparison to the diseased group. Molecular docking studies indicated that KA appeared to have a high tendency to bind to protein targets. KA was associated with the drop in the cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β). CONCLUSION In conclusion, this study highlighted the potential therapeutic effect of KA in alleviating MSU-induced gout by suppressing the NF-κB signaling pathway. The anti-inflammatory and antioxidant activity was demonstrated by behavioral studies and advanced biochemical evaluations including blood analysis and oxido-nitrosative stress markers. Histopathological analysis, including H&E staining, immunohistochemistry, and Masson Trichrome staining, revealed tissue preservation, while FTIR and X-ray revealed structural improvements. Molecular docking verified strong binding affinity to NF-κB-related targets, verifying its mechanistic action. These findings suggest promising applications of KA in acute gout management due to its potent NF-κB modulating activity.
Collapse
Affiliation(s)
- Maryam Jamil
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sana Zafar
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Parveen Akhtar Buttar
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Bushra Shal
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, NM, 87111, USA.
| | - Kifayatullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, South Korea.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Cakmak-Arslan G, Kaya Y, Mamuk S, Akarsu ES, Severcan F. The investigation of the molecular changes during lipopolysaccharide-induced systemic inflammation on rat hippocampus by using FTIR spectroscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300541. [PMID: 38531619 DOI: 10.1002/jbio.202300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The aim of this study is to reveal the molecular changes accompanying the neuronal hyper-excitability during lipopolysaccharide (LPS)-induced systemic inflammation on rat hippocampus using Fourier transform infrared (FTIR) spectroscopy. For this aim, the body temperature of Wistar albino rats administered LPS or saline was recorded by radiotelemetry. The animals were decapitated when their body temperature began to decrease by 0.5°C after LPS treatment and the hippocampi of them were examined by FTIR spectroscopy. The results indicated that systemic inflammation caused lipid peroxidation, an increase in the amounts of lipids, proteins and nucleic acids, a decrease in membrane order, an increase in membrane dynamics and changes in the secondary structure of proteins. Principal component analysis successfully separated control and LPS-treated groups. In conclusion, significant structural, compositional and functional alterations occur in the hippocampus during systemic inflammation and these changes may have specific characteristics which can lead to neuronal hyper-excitability.
Collapse
Affiliation(s)
- Gulgun Cakmak-Arslan
- Department of Biology, Faculty of Arts and Sciences, Duzce University, Duzce, Turkey
| | - Yildiray Kaya
- Department of Biology, Faculty of Arts and Sciences, Duzce University, Duzce, Turkey
| | - Soner Mamuk
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Eyup Sabri Akarsu
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Feride Severcan
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
3
|
Ritschar S, Schirmer E, Hufnagl B, Löder MGJ, Römpp A, Laforsch C. Classification of target tissues of Eisenia fetida using sequential multimodal chemical analysis and machine learning. Histochem Cell Biol 2022; 157:127-137. [PMID: 34750664 PMCID: PMC8847259 DOI: 10.1007/s00418-021-02037-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/22/2022]
Abstract
Acquiring comprehensive knowledge about the uptake of pollutants, impact on tissue integrity and the effects at the molecular level in organisms is of increasing interest due to the environmental exposure to numerous contaminants. The analysis of tissues can be performed by histological examination, which is still time-consuming and restricted to target-specific staining methods. The histological approaches can be complemented with chemical imaging analysis. Chemical imaging of tissue sections is typically performed using a single imaging approach. However, for toxicological testing of environmental pollutants, a multimodal approach combined with improved data acquisition and evaluation is desirable, since it may allow for more rapid tissue characterization and give further information on ecotoxicological effects at the tissue level. Therefore, using the soil model organism Eisenia fetida as a model, we developed a sequential workflow combining Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for chemical analysis of the same tissue sections. Data analysis of the FTIR spectra via random decision forest (RDF) classification enabled the rapid identification of target tissues (e.g., digestive tissue), which are relevant from an ecotoxicological point of view. MALDI imaging analysis provided specific lipid species which are sensitive to metabolic changes and environmental stressors. Taken together, our approach provides a fast and reproducible workflow for label-free histochemical tissue analyses in E. fetida, which can be applied to other model organisms as well.
Collapse
Affiliation(s)
- Sven Ritschar
- Department of Animal Ecology i and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Elisabeth Schirmer
- Department of Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany
| | - Benedikt Hufnagl
- Institute of Chemical Technologies and Analytics, Vienna, TU, Austria
- Purency GmbH, Walfischgasse 8/34, T1010, Vienna, Austria
| | - Martin G J Löder
- Department of Animal Ecology i and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Andreas Römpp
- Department of Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| | - Christian Laforsch
- Department of Animal Ecology i and BayCEER, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
4
|
Praja RK, Wongwattanakul M, Tippayawat P, Phoksawat W, Jumnainsong A, Sornkayasit K, Leelayuwat C. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Discriminates the Elderly with a Low and High Percentage of Pathogenic CD4+ T Cells. Cells 2022; 11:458. [PMID: 35159268 PMCID: PMC8834052 DOI: 10.3390/cells11030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
In the aging process, the presence of interleukin (IL)-17-producing CD4+CD28-NKG2D+T cells (called pathogenic CD4+ T cells) is strongly associated with inflammation and the development of various diseases. Thus, their presence needs to be monitored. The emergence of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy empowered with machine learning is a breakthrough in the field of medical diagnostics. This study aimed to discriminate between the elderly with a low percentage (LP; ≤3%) and a high percentage (HP; ≥6%) of pathogenic CD4+CD28-NKG2D+IL17+ T cells by utilizing ATR-FTIR coupled with machine learning algorithms. ATR spectra of serum, exosome, and HDL from both groups were explored in this study. Only exosome spectra in the 1700-1500 cm-1 region exhibited possible discrimination for the LP and HP groups based on principal component analysis (PCA). Furthermore, partial least square-discriminant analysis (PLS-DA) could differentiate both groups using the 1700-1500 cm-1 region of exosome ATR spectra with 64% accuracy, 69% sensitivity, and 61% specificity. To obtain better classification performance, several spectral models were then established using advanced machine learning algorithms, including J48 decision tree, support vector machine (SVM), random forest (RF), and neural network (NN). Herein, NN was considered to be the best model with an accuracy of 100%, sensitivity of 100%, and specificity of 100% using serum spectra in the region of 1800-900 cm-1. Exosome spectra in the 1700-1500 and combined 3000-2800 and 1800-900 cm-1 regions using the NN algorithm gave the same accuracy performance of 95% with a variation in sensitivity and specificity. HDL spectra with the NN algorithm also showed excellent test performance in the 1800-900 cm-1 region with 97% accuracy, 100% sensitivity, and 95% specificity. This study demonstrates that ATR-FTIR coupled with machine learning algorithms can be used to study immunosenescence. Furthermore, this approach can possibly be applied to monitor the presence of pathogenic CD4+ T cells in the elderly. Due to the limited number of samples used in this study, it is necessary to conduct a large-scale study to obtain more robust classification models and to assess the true clinical diagnostic performance.
Collapse
Affiliation(s)
- Rian Ka Praja
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand;
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (M.W.); (P.T.); (A.J.); (K.S.)
| | - Molin Wongwattanakul
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (M.W.); (P.T.); (A.J.); (K.S.)
| | - Patcharaporn Tippayawat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (M.W.); (P.T.); (A.J.); (K.S.)
- Department of Clinical Microbiology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wisitsak Phoksawat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Amonrat Jumnainsong
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (M.W.); (P.T.); (A.J.); (K.S.)
- Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanda Sornkayasit
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (M.W.); (P.T.); (A.J.); (K.S.)
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (M.W.); (P.T.); (A.J.); (K.S.)
- Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
5
|
Fourier Transform Infrared (FTIR) Spectroscopy to Analyse Human Blood over the Last 20 Years: A Review towards Lab-on-a-Chip Devices. MICROMACHINES 2022; 13:mi13020187. [PMID: 35208311 PMCID: PMC8879834 DOI: 10.3390/mi13020187] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
Since microorganisms are evolving rapidly, there is a growing need for a new, fast, and precise technique to analyse blood samples and distinguish healthy from pathological samples. Fourier Transform Infrared (FTIR) spectroscopy can provide information related to the biochemical composition and how it changes when a pathological state arises. FTIR spectroscopy has undergone rapid development over the last decades with a promise of easier, faster, and more impartial diagnoses within the biomedical field. However, thus far only a limited number of studies have addressed the use of FTIR spectroscopy in this field. This paper describes the main concepts related to FTIR and presents the latest research focusing on FTIR spectroscopy technology and its integration in lab-on-a-chip devices and their applications in the biological field. This review presents the potential use of FTIR to distinguish between healthy and pathological samples, with examples of early cancer detection, human immunodeficiency virus (HIV) detection, and routine blood analysis, among others. Finally, the study also reflects on the features of FTIR technology that can be applied in a lab-on-a-chip format and further developed for small healthcare devices that can be used for point-of-care monitoring purposes. To the best of the authors’ knowledge, no other published study has reviewed these topics. Therefore, this analysis and its results will fill this research gap.
Collapse
|
6
|
Alberto-Silva C, Querobino SM, Melo-Silva CA, Costa MS, Franco Oliveira LV, Zamuner SR. Local envenomation caused by a bioactive peptide fraction of Bothrops jararaca snake venom induces leukocyte influx in the lung and changes in pulmonary mechanics. Toxicon 2022; 207:52-59. [PMID: 34999120 DOI: 10.1016/j.toxicon.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
The crude venom of the Bothrops jararaca snake (Bj-CV) is a complex mixture of biologically active proteins that includes a variety of peptides in the low molecular weight fraction (Bj-PF). We investigated how an intramuscular injection of Bj-CV (1.2 mg kg-1) and Bj-PF (0.24 mg kg-1) influenced lung mechanics and lung and muscle inflammation in male Swiss mice 15 min, 1, 6, and 24 h after inoculation. Pressure dissipation against lung resistive components (ΔP1) rose significantly from 1 to 24 h after Bj-CV and 6-24 h after Bj-PF inoculation. Both Bj-CV and Bj-PF increased the total pressure variation of the lung (ΔPtot) 24 h after injection. Lung static elastance increased significantly after injection in all time periods investigated by Bj-CV and from 6 to 24 h by Bj-PF. Lung static elastance increased significantly after injection in all time periods investigated by Bj-CV and from 6 to 24 h by Bj-PF. Furthermore, intramuscular inoculation of Bj-CV and Bj-PF resulted in an increase in muscle and pulmonary inflammation, as evidenced by an increase in leukocyte influx when compared to the control group. Finally, both Bj-CV and Bj-PF cause acute lung injury, as shown by pulmonary inflammation and decreased lung mechanics. Furthermore, the fact that Bj-PF produces mechanical alterations in the lungs and muscular inflammation implies that non-enzymatic compounds can cause inflammation.
Collapse
Affiliation(s)
- Carlos Alberto-Silva
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), São Bernardo do Campo, 09606-070, SP, Brazil.
| | - Samyr Machado Querobino
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), São Bernardo do Campo, 09606-070, SP, Brazil; Minas Gerais State University (UEMG), Health and Biological Sciences Nucleus, Passos, MG, Brazil
| | | | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba- UNIVAP, Av. Shishima Hifumi 2911, São José dos Campos, Urbanova, 12244-000, SP, Brazil
| | - Luis Vicente Franco Oliveira
- Pós Graduate Program in Human Movement and Rehabilitation, Evangelical University of Goiás - UniEvangélica, Av. Universitária Km 3,5, Anápolis, 75083-515, Goiás, Brazil
| | - Stella Regina Zamuner
- Postgraduate Program in Medicine, Universidade Nove de Julho - UNINOVE, R: Vergueiro, 235 - Bairro Liberdade, São Paulo, SP, 01504-000, Brazil
| |
Collapse
|
7
|
Hall DJ, Pourzal R, Jacobs JJ, Urban RM. Metal wear particles in hematopoietic marrow of the axial skeleton in patients with prior revision for mechanical failure of a hip or knee arthroplasty. J Biomed Mater Res B Appl Biomater 2018; 107:1930-1936. [DOI: 10.1002/jbm.b.34285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Deborah J. Hall
- Department of Orthopedic SurgeryRush University Medical Center Chicago Illinois
| | - Robin Pourzal
- Department of Orthopedic SurgeryRush University Medical Center Chicago Illinois
| | - Joshua J. Jacobs
- Department of Orthopedic SurgeryRush University Medical Center Chicago Illinois
| | - Robert M. Urban
- Department of Orthopedic SurgeryRush University Medical Center Chicago Illinois
| |
Collapse
|