1
|
Tan ZQ, Ooi EH, Chiew YS, Foo JJ, Ng YK, Ooi ET. Enhancing sonothrombolysis outcomes with dual-frequency ultrasound: Insights from an in silico microbubble dynamics study. Comput Biol Med 2024; 181:109061. [PMID: 39186904 DOI: 10.1016/j.compbiomed.2024.109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Sonothrombolysis is a technique that employs the ultrasound waves to break down the clot. Recent studies have demonstrated significant improvement in the treatment efficacy when combining two ultrasound waves of different frequencies. Nevertheless, the findings remain conflicted on the ideal frequency pairing that leads to an optimal treatment outcome. Existing experimental studies are constrained by the limited range of frequencies that can be investigated, while numerical studies are typically confined to spherical microbubble dynamics, thereby restricting the scope of the analysis. To overcome this, the present study investigated the microbubble dynamics caused by the different combinations of ultrasound frequencies. This was carried out using computational modelling as it enables the visualisation of the microbubble behaviour, which is difficult in experimental studies due to the opacity of blood. The results showed that the pairings of two ultrasound waves with low frequencies generally produced stronger cavitation and higher flow-induced shear stress on the clot surface. However, one should avoid the frequency pairings that are integer multipliers of each other, i.e., frequency ratio of 1/3, 1/2 and 2, as they led to resultant wave with low pressure amplitude that weakened the cavitation. At 0.5 + 0.85 MHz, the microbubble caused the highest shear stress of 60.5 kPa, due to its large translational distance towards the clot. Although the pressure threshold for inertial cavitation was reduced using dual-frequency ultrasound, the impact of the high-speed jet can only be realised when the microbubble travelled close to the clot. The results obtained from the present study provide groundwork for deeper understanding on the microbubble dynamics during dual-frequency sonothrombolysis, which is of paramount importance for its optimisations and the subsequent clinical translation.
Collapse
Affiliation(s)
- Zhi Qi Tan
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Medical Engineering and Technology Hub, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ean H Ooi
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Medical Engineering and Technology Hub, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Yeong Shiong Chiew
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Medical Engineering and Technology Hub, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ji Jinn Foo
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yin Kwee Ng
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ean Tat Ooi
- School of Engineering and Information Technology, Faculty of Science and Technology, Federation University, VIC 3350, Australia
| |
Collapse
|
2
|
Zengin S, Mercan S, Tarhan D, Gök A, Ercan AM. Age-related changes on physicochemical properties of the artificial vitreous humor: A practical tool for enhancing ex vivo studies. Exp Eye Res 2024; 239:109762. [PMID: 38147936 DOI: 10.1016/j.exer.2023.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The vitreous humor (VH) is a hydrophilic, jelly-like ocular fluid, which is located in the posterior chamber of the eye. The rheological, structural, and chemical properties of VH change significantly during aging, which further causes eye-associated diseases and could be a potential indicator for various diseases. In this study, artificial VH (A-VH) samples were created by taking into account different age groups to observe age-related changes in the physicochemical properties of these samples. This study aimed to measure the physicochemical properties of age-dependently prepared A-VH samples to determine the changes with aging in the physicochemical properties of A-VH samples. Phosphate-buffered saline (PBS)-based A-VH samples were prepared in three types representing adult, middle-aged, and elder individuals. Age-related changes in physicochemical properties (surface tension, osmolality, pH, relative viscosity, density, and refractive index) were analyzed by related equipment. The A-VH samples, prepared using PBS, showed strong similarity to authentic VH in terms of physicochemical properties. While the age-related changes studies have revealed some discrepancies between age-dependently prepared A-VH samples in terms of surface tension, osmolality, relative viscosity, and pH with high correlation coefficients (r2 > 0,94), density and refractive index values did not show any significant differences and correlation between types of A-VH representing 3 age groups. In conclusion, age-dependent A-VH samples were created successfully to use ex vivo method development studies, and the influence of aging on the physicochemical properties of VH was demonstrated as well.
Collapse
Affiliation(s)
- Simge Zengin
- Istanbul University-Cerrahpaşa, Institute of Forensic Sciences and Legal Medicine, Department of Science, Buyukcekmece, Istanbul, Turkey
| | - Selda Mercan
- Istanbul University-Cerrahpaşa, Institute of Forensic Sciences and Legal Medicine, Department of Science, Buyukcekmece, Istanbul, Turkey.
| | - Duygu Tarhan
- Bahcesehir University, School of Medicine, Department of Biophysics, Goztepe, Istanbul, Turkey
| | - Aslı Gök
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, Avcılar, Istanbul, Turkey
| | - Alev Meltem Ercan
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Biophysics, Fatih, Istanbul, Turkey
| |
Collapse
|
3
|
Hughes DA, Szkuta B, van Oorschot RAH, Conlan XA. How the physicochemical substrate properties can influence the deposition of blood and seminal deposits. Forensic Sci Int 2024; 354:111914. [PMID: 38154427 DOI: 10.1016/j.forsciint.2023.111914] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
A comprehensive investigation into the impact of the physical and chemical variables of a substrate on the deposition was conducted to aid in the estimation of the subsequent transfer probabilities of blood and semen. The study focussed on surface roughness, topography, surface free energy (SFE), wettability, and the capacity for protein adsorption. Conjointly, evaluations of the physical and chemical characteristics of blood and seminal deposits were conducted, to assess the fluid dynamics of these non-Newtonian fluids and their adhesion potential to aluminium and polypropylene. A linear range of surface roughness parameters (0.5 - 3.5 µm) were assessed for their impact on the deposit deposition spread and adhesion height, to gather insight into the change in fluid dynamics of non-Newtonian fluids. Blood has shown to produce a uniform adhesion coverage on aluminium across all roughness categories while blood deposited on polypropylene exhibited a strong hydrophobic response from a surface roughness of 2.0 µm and beyond. Interestingly, the deposition height of blood resulted in near identical values, whether deposited onto the hydrophobic polypropylene or the hydrophilic aluminium substrate, illustrating the potential influence of a heightened fibrinogen adsorption effect. Semen deposited on aluminium resulted in concentrated localised deposition regions after reaching a surface roughness of 2.0 µm, highlighting the development of crystal formations afforded by the sodium ion concentration in the seminal fluid. The semen deposited on polypropylene conformed to the substrate contours producing a deposition film that was smoother than the substrate itself, underlining the effects of thixotropic fluid dynamics. Variables identified here establish the complexity observed for non-Newtonian fluids, and the effect protein adsorption may have on the deposition behaviour of blood and seminal deposits and inform questions in relation to the adhesion strength of said deposits and their ability to dislodge (becoming detached upon the application of an external force) from the substrate surface during a potential transfer event.
Collapse
Affiliation(s)
- Deborah A Hughes
- Deakin University, School of Life and Environmental Sciences, Geelong, Australia; Office of the Chief Forensic Scientist, Victoria Police Forensic Services Centre, Macleod, Australia
| | - Bianca Szkuta
- Deakin University, School of Life and Environmental Sciences, Geelong, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Centre, Macleod, Australia; School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Xavier A Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, Australia.
| |
Collapse
|
4
|
Salcedo MK, Jung S, Combes SA. Autonomous Expansion of Grasshopper Wings Reveals External Forces Contribute to Final Adult Wing Shape. Integr Comp Biol 2023; 63:1111-1126. [PMID: 37715350 DOI: 10.1093/icb/icad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
Ecdysis, transformation from juvenile to adult form in insects, is time-consuming and leaves insects vulnerable to predation. For winged insects, the process of wing expansion during ecdysis, unfurling and expanding the wings, is a critical bottleneck in achieving sexual maturity. Internal and external forces play a role in wing expansion. Vigorous abdominal pumping during wing expansion allows insects to pressurize and inflate their wings, filling them with hemolymph. In addition, many insects adopt expansion-specific postures and, if inhibited, do not expand their wings normally, suggesting that external forces such as gravity may play a role. However, two previous studies over 40 years ago, reported that the forewings of swarming locusts can expand autonomously when removed from the emerging insect and laid flat on a saline solution. Termed "autoexpansion," we replicated previous experiments of autoexpansion on flat liquid media, documenting changes in both wing length and area over time while also focusing on the role of gravity in autoexpansion. Using the North American bird grasshopper Schistocerca americana, we tested four autoexpansion treatments of varying surface tension and hydrophobicity (gravity, deionized water, buffer, and mineral oil) while simultaneously observing and measuring intact, normal wing expansion. Finally, we constructed a simple model of a viscoelastic expanding wing subjected to gravity, to determine whether it could capture aspects of wing expansion. Our data confirmed that wing autoexpansion does occur in S. americana, but autoexpanding wings, especially hindwings, failed to increase to the same final length and area as intact wings. We found that gravity plays an important role in wing expansion, early in the expansion process. Combined with the significant mass increase we documented in intact wings, it suggests that hydraulic pumping of hemolymph into the wings plays an important role in increasing the area of expanding wings, especially in driving expansion of the large, pleated hindwings. Autoexpansion in a non-swarming orthopteran suggests that local cues driving wing autoexpansion may serve a broader purpose, reducing total expansion time and costs by shifting some processes from central to local control. Documenting wing autoexpansion in a widely studied model organism and demonstrating a mathematical model provides a tractable new system for exploring higher level questions about the mechanisms of wing expansion and the implications of autoexpansion, as well as potential bioinspiration for future technologies applicable to micro-air vehicles, space exploration, or medical and prosthetic devices.
Collapse
Affiliation(s)
- Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Stacey A Combes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Mittal H, Raza M, Khanuja M. Liquid phase exfoliation of MoSe 2: Effect of solvent on morphology, edge confinement, bandgap and number of layers study. MethodsX 2023; 11:102409. [PMID: 37928106 PMCID: PMC10622839 DOI: 10.1016/j.mex.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
In this study, a facile and scalable method for synthesizing MoSe2 nanomaterial via a sonication-assisted liquid-phase exfoliation method is proposed. This study shows the successful synthesis of few-layered MoSe2 in various solvents including DI water, ethanol, N-Methyl-2-pyrrolidone (NMP), Dimethylformamide (DMF) and Dimethylsulfoxide (DMSO). The exfoliated nanosheets have remarkably different properties than bulk MoSe2 which were studied using Field emission scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and UV-Vis spectroscopy to investigate their morphology, functional groups, structure and optical properties, respectively. The mean values of the number of layers from an optical extinction spectrum based on the effect of edge and quantum confinement were also calculated. Moreover, the exfoliated material using this method has potential application in energy storage as demonstrated by the electrochemical performance of the bulk and exfoliated materials.•Successful synthesis of the few-layer MoSe2 from bulk MoSe2 using liquid phase exfoliation method in various solvents•The investigation of the effect of solvent on the number of layers and optical properties of MoSe2.
Collapse
Affiliation(s)
- Honey Mittal
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Maryam Raza
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Manika Khanuja
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
6
|
Tan ZQ, Ooi EH, Chiew YS, Foo JJ, Ng EYK, Ooi ET. A computational framework for the multiphysics simulation of microbubble-mediated sonothrombolysis using a forward-viewing intravascular transducer. ULTRASONICS 2023; 131:106961. [PMID: 36812819 DOI: 10.1016/j.ultras.2023.106961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Sonothrombolysis is a technique that utilises ultrasound waves to excite microbubbles surrounding a clot. Clot lysis is achieved through mechanical damage induced by acoustic cavitation and through local clot displacement induced by acoustic radiation force (ARF). Despite the potential of microbubble-mediated sonothrombolysis, the selection of the optimal ultrasound and microbubble parameters remains a challenge. Existing experimental studies are not able to provide a complete picture of how ultrasound and microbubble characteristics influence the outcome of sonothrombolysis. Likewise, computational studies have not been applied in detail in the context of sonothrombolysis. Hence, the effect of interaction between the bubble dynamics and acoustic propagation on the acoustic streaming and clot deformation remains unclear. In the present study, we report for the first time the computational framework that couples the bubble dynamic phenomena with the acoustic propagation in a bubbly medium to simulate microbubble-mediated sonothrombolysis using a forward-viewing transducer. The computational framework was used to investigate the effects of ultrasound properties (pressure and frequency) and microbubble characteristics (radius and concentration) on the outcome of sonothrombolysis. Four major findings were obtained from the simulation results: (i) ultrasound pressure plays the most dominant role over all the other parameters in affecting the bubble dynamics, acoustic attenuation, ARF, acoustic streaming, and clot displacement, (ii) smaller microbubbles could contribute to a more violent oscillation and improve the ARF simultaneously when they are stimulated at higher ultrasound pressure, (iii) higher microbubbles concentration increases the ARF, and (iv) the effect of ultrasound frequency on acoustic attenuation is dependent on the ultrasound pressure. These results may provide fundamental insight that is crucial in bringing sonothrombolysis closer to clinical implementation.
Collapse
Affiliation(s)
- Zhi Q Tan
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ean H Ooi
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Yeong S Chiew
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ji J Foo
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Eddie Y K Ng
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Ean T Ooi
- School of Engineering and Information Technology, Faculty of Science and Technology, Federation University, VIC 3350, Australia
| |
Collapse
|
7
|
Laha S, Kar S, Chakraborty S. Cellular aggregation dictates universal spreading behaviour of a whole-blood drop on a paper strip. J Colloid Interface Sci 2023; 640:309-319. [PMID: 36867927 DOI: 10.1016/j.jcis.2023.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/26/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
HYPOTHESIS The complex spreading dynamics of blood on paper matrix is likely to be quantitatively altered with variations in the fractional occupancy of red blood cells in the whole blood (haematocrit). Here, we presented an apparently surprising observation that a finite volume blood drop undergoes a universal time-dependent spreading on a filter paper strip that is virtually invariant with its hematocrit level within physiologically healthy regime, though distinctively distinguishable from the spreading laws of blood plasma and water. EXPERIMENTS Our hypothesis was ascertained by performing controlled wicking experiments on filter papers of different grades. Spreading of human blood samples of different haematocrit levels ranging between 15% and 51% and the plasma separated from therein were traced by combined high-speed imaging and microscopy. These experiments were complemented with a semi-analytical theory to decipher the key physics of interest. RESULTS Our results unveiled the exclusive influence of the obstructing cellular aggregates in the randomly distributed hierarchically structured porous pathways and deciphered the role of the networked structures of the various plasma proteins that induced hindered diffusion. The resulting universal signatures of spontaneous dynamic spreading, delving centrally on the fractional reduction in the interlaced porous passages, provide novel design basis for paper-microfluidic kits in medical diagnostics and beyond.
Collapse
Affiliation(s)
- Sampad Laha
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Shantimoy Kar
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, India; Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana 500037, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India; Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, India.
| |
Collapse
|
8
|
Peshin S, Madou M, Kulinsky L. Integrating Bio-Sensing Array with Blood Plasma Separation on a Centrifugal Platform. SENSORS (BASEL, SWITZERLAND) 2023; 23:1710. [PMID: 36772748 PMCID: PMC9920851 DOI: 10.3390/s23031710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Numerous immunoassays have been successfully integrated on disc-based centrifugal platforms (CDs) over the last 20 years. These CD devices can be used as portable point-of-care (POC) platforms with sample-to-answer capabilities where bodily fluids such as whole blood can be used as samples directly without pre-processing. In order to use whole blood as a sample on CDs, centrifugation is used to separate red blood cells from plasma on CDs. There are several techniques for using specific fluidic patterns in the centrifugal fluidic network, such as reciprocation, that enhances the sensitivity of the immunoassays, including those using microarray antigen membranes. Present work demonstrates, for the first time, simultaneous integration of blood plasma separation (BPS) and reciprocation on the CD platform. The integrated design allows plasma that is separated from the red blood cells in a sedimentation chamber to flow into the reciprocation chamber via a narrow connecting channel of 0.5 mm × 0.5 mm cross-section. Due to the small cross-section of the connecting channel, there is no inflow of the red blood cell into the reciprocation chamber during subsequent fluidic operations of the CD. While no inflow of the red blood cells into the reciprocation chamber was observed, the conditions of 20 g jerk acceleration were also simulated in ANSYS finite element analysis software, and it was found that the CD design that was used is capable of retaining red blood cells in the sedimentation chamber. Experimentally, the isolation of red blood cells in the sedimentation chamber was confirmed using the ImageJ image processor to detect the visible color-based separation of the plasma from the blood. A fluorescent analyte testing on the bio-sensing array of the presented novel integrated design and on the standard reciprocation design CD was conducted for 7 min of reciprocation in each case. The test analyte was Europium Streptavidin Polystyrene analyte (10-3 mg/mL) and the microarray consisted of Biotin bovine serum albumin (BSA) dots. The fluorescent signals for the standard and integrated designs were nearly identical (within the margin of error) for the first several minutes of reciprocation, but the fluorescent signal for the integrated design was significantly higher when the reciprocation time was increased to 7 min.
Collapse
Affiliation(s)
- Snehan Peshin
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| | - Marc Madou
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
- School of Engineering and Science, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Lawrence Kulinsky
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Windberger U, Sparer A, Elsayad K. The role of plasma in the yield stress of blood. Clin Hemorheol Microcirc 2023; 84:369-383. [PMID: 37334582 DOI: 10.3233/ch-231701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Yielding and shear elasticity of blood are merely discussed within the context of hematocrit and erythrocyte aggregation. However, plasma might play a substantial role due its own viscoelasticity. OBJECTIVE If only erythrocyte aggregation and hematocrit would determine yielding, blood of different species with comparable values would present comparable yield stresses. METHODS rheometry (SAOS: amplitude and frequency sweep tests; flow curves) of hematocrit-matched samples at 37°C. Brillouin Light Scattering Spectroscopy at 38°C. RESULTS Yield stress for pig: 20mPa, rat: 18mPa, and human blood: 9mPa. Cow and sheep blood were not in quasi-stationary state supporting the role of erythrocyte aggregation for the development of elasticity and yielding. However, pig and human erythrocytes feature similar aggregability, but yield stress of porcine blood was double. Murine and ruminant erythrocytes both rarely aggregate, but their blood behavior was fundamentally different. Pig plasma was shear-thinning and murine plasma was platelet-enriched, supporting the role of plasma for triggering collective effects and gel-like properties. CONCLUSIONS Blood behavior near zero shear flow is not based solely on erythrocyte aggregation and hematocrit, but includes the hydrodynamic interaction with plasma. The shear stress required to break down elasticity is not the critical shear stress for dispersing erythrocyte aggregates, but the shear stress required to fracture the entire assembly of blood cells within their intimate embedding.
Collapse
Affiliation(s)
- U Windberger
- Core Facility Laboratory Animal Breeding and Husbandry, Decentralized Biomedical Facilities, Medical University Vienna, Austria
| | - A Sparer
- Core Facility Laboratory Animal Breeding and Husbandry, Decentralized Biomedical Facilities, Medical University Vienna, Austria
| | - K Elsayad
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University Vienna, Austria
- Medical Imaging Cluster (MIC), Medical University of Vienna, Austria
| |
Collapse
|
10
|
Wiphanurat C, Hanthanon P, Ouipanich S, Harnkarnsujarit N, Magaraphan R, Nampitch T. Blending HDPE with biodegradable polymers using modified natural rubber as a compatibilizing agent: mechanical, physical, chemical, thermal and morphological properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Rubio A, López M, Rodrigues T, Campo-Deaño L, Vega EJ. A particulate blood analogue based on artificial viscoelastic blood plasma and RBC-like microparticles at a concentration matching the human haematocrit. SOFT MATTER 2022; 18:7510-7523. [PMID: 36148801 DOI: 10.1039/d2sm00947a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
There has been enormous interest in the production of fluids with rheological properties similar to those of real blood over the last few years. Application fields range from biomicrofluidics (microscale) to forensic science (macroscale). The inclusion of flexible microparticles in blood analogue fluids has been demonstrated to be essential in order to reproduce the behaviour of blood flow in these fields. Here, we describe a protocol to produce a whole human blood analogue composed of a proposed plasma analogue and flexible spherical microparticles that mimic the key structural attributes of RBCs (size and mechanical properties), at a concentration matching the human haematocrit (∼42% by volume). Polydimethylsiloxane (PDMS) flexible microparticles were used to mimic RBCs, whose capability to deform is tunable by means of the mixing ratio of the PDMS precursor. Their flow through glass micronozzles allowed us to find the appropriate mixing ratio of PDMS to have approximately the same Young's modulus (E) as that exhibited by real RBCs. Shear and extensional rheology and microrheology techniques were used to match the properties exhibited by human plasma and whole blood at body temperature (37 °C). Finally, we study the flow of our proposed fluid through a microfluidic channel, showing the in vitro reproduction of the multiphase flow effects taking place in the human microcirculatory system, such as the cell-free layer (CFL) and the Fåhræus-Lindqvist effect. A macroscale application in the field of forensic science is also presented, concerning the impact of our blood analogue droplets on a solid surface for bloodstain pattern analysis.
Collapse
Affiliation(s)
- A Rubio
- Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006, Badajoz, Spain. ejvega@unex
| | - M López
- Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006, Badajoz, Spain. ejvega@unex
| | - T Rodrigues
- CEFT, Depto. de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - L Campo-Deaño
- CEFT, Depto. de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - E J Vega
- Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006, Badajoz, Spain. ejvega@unex
| |
Collapse
|
12
|
Li G, Chen T, Mao Y, Ai Y, Yan W, Lu Y, Liu W, Wang H, Li L. Surfactant Protein A can Affect the Surface Tension of the Eustachian Tube and Macrophage Migration. Laryngoscope 2022. [DOI: 10.1002/lary.30396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Guodong Li
- Department of Otolaryngology‐Head and Neck surgery Shandong Provincial ENT Hospital, Shandong University Jinan Shandong China
- Department of Otolaryngology Shanxi Provincial People's Hospital/The Fifth Clinical Medical College of Shanxi Medical University Jinzhong Shanxi China
| | - Tao Chen
- Department of Otolaryngology‐Head and Neck surgery Shandong Provincial ENT Hospital, Shandong University Jinan Shandong China
- Department of Otorhinolaryngology Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Jinzhong Shanxi China
| | - Yanyan Mao
- Department of Otolaryngology‐Head and Neck surgery Shandong Provincial ENT Hospital, Shandong University Jinan Shandong China
| | - Yu Ai
- Department of Otolaryngology‐Head and Neck surgery Shandong Provincial ENT Hospital, Shandong University Jinan Shandong China
| | - Wenqing Yan
- Department of Otolaryngology‐Head and Neck surgery Shandong Provincial ENT Hospital, Shandong University Jinan Shandong China
| | - Yanqing Lu
- Department of Otolaryngology‐Head and Neck surgery Shandong Provincial ENT Hospital, Shandong University Jinan Shandong China
| | - Wenwen Liu
- Department of Otolaryngology‐Head and Neck surgery Shandong Provincial ENT Hospital, Shandong University Jinan Shandong China
| | - Haibo Wang
- Department of Otolaryngology‐Head and Neck surgery Shandong Provincial ENT Hospital, Shandong University Jinan Shandong China
| | - Li Li
- Department of Otolaryngology‐Head and Neck surgery Shandong Provincial ENT Hospital, Shandong University Jinan Shandong China
| |
Collapse
|
13
|
Zaitsev SY, Voronina OA. An innovative approach to assessing the integral parameters of the hybrid pig blood for the methodological support of animal husbandry development. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The main aims of research were: to measure the surface tension (ST) values of hybrid pig blood; to establish the relationships between these ST-values and obtained biochemical parameters of the same blood samples. All studied animals (n=43) were healthy and grown at the feeding stations (Russia). The ST-values (measured using PAT-device) of the pig blood were obtained at initial (n=30) and final (n=13) points of animal fattening. The following correlations between eST at final (or initial) point of pig fattening and the biochemical parameters were obtained: +0.80 (+0.19) with the ratio of albumins to globulins (A/G), -0.39 with globulins (-0.38) with phospholipids, +0.32 (+0.40) with the “de Ritis” coefficient, -0.52 (+0.35) with Cl. The correlations between eTA at same fattening points and the biochemical parameters were obtained: +0.32 with A/G ratio, +0.18 with globulins, +0.36 with phospholipids, +0.28 (+0.17) with the “de Ritis” coefficient, -0.32 (+0.21) with Mg, +0.35 with Fe, +0.30 with Cl, +0.31 (+0.34) with the ratio of calcium to phosphorus (Ca/P). Such tendency indicated the stabilization of pig physiological-biochemical status during their fattening. The authors recommended the following eST (42-46 mN/m) and eTA (10-30 mN·m-1·s-½) blood parameters as reference values for further applications in husbandry.
Collapse
|
14
|
Farooq U, Liu Y, Li P, Deng Z, Liu X, Zhou W, Yi S, Rong N, Meng L, Niu L, Zheng H. Acoustofluidic dynamic interfacial tensiometry. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:3608. [PMID: 34852573 DOI: 10.1121/10.0007161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The interfacial tension (IFT) of fluids plays an essential role in industrial, biomedical, and synthetic chemistry applications; however, measuring IFT at ultralow volumes is challenging. Here, we report a novel method for sessile drop tensiometry using surface acoustic waves (SAWs). The IFT of the fluids was determined by acquiring the silhouette of an axisymmetric sessile drop and applying iterative fitting using Taylor's deformation equation. Owing to physiochemical differences, upon interacting with acoustic waves, each microfluid has a different streaming velocity. This streaming velocity dictates any subsequent changes in droplet shape (i.e., height and width). We demonstrate the effectiveness of the proposed SAW-based tensiometry technique using blood plasma to screen for high leptin levels. The proposed device can measure the IFT of microscale liquid volumes (up to 1 μL) with an error margin of only ±5% (at 25 °C), which deviates from previous reported results. As such, this method provides pathologists with a solution for the pre-diagnosis of various blood-related diseases.
Collapse
Affiliation(s)
- Umar Farooq
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yuanting Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengqi Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhiting Deng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Xiufang Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Wei Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Shasha Yi
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ning Rong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
15
|
Sharma DK, Kumar R, Avasthi DK, Sikarwar BS. Self Assembly of Super-hydrophobic Nanotextured Methyl Functionalized Silica on Copper and Aluminium Surfaces for Moist Air Condensation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|