1
|
Szczygieł T, Koziróg A, Otlewska A. Synthetic and Natural Antifungal Substances in Cereal Grain Protection: A Review of Bright and Dark Sides. Molecules 2024; 29:3780. [PMID: 39202859 PMCID: PMC11357261 DOI: 10.3390/molecules29163780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Molds pose a severe challenge to agriculture because they cause very large crop losses. For this reason, synthetic fungicides have been used for a long time. Without adequate protection against pests and various pathogens, crop losses could be as high as 30-40%. However, concerns mainly about the environmental impact of synthetic antifungals and human health risk have prompted a search for natural alternatives. But do natural remedies only have advantages? This article reviews the current state of knowledge on the use of antifungal substances in agriculture to protect seeds against phytopathogens. The advantages and disadvantages of using both synthetic and natural fungicides to protect cereal grains were discussed, indicating specific examples and mechanisms of action. The possibilities of an integrated control approach, combining cultural, biological, and chemical methods are described, constituting a holistic strategy for sustainable mold management in the grain industry.
Collapse
Affiliation(s)
- Tomasz Szczygieł
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (T.S.); (A.O.)
- Interdisciplinary Doctoral School, Lodz University of Technology, 90-530 Lodz, Poland
| | - Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (T.S.); (A.O.)
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (T.S.); (A.O.)
| |
Collapse
|
2
|
Khanal S, Gaire SP, Zhou XG. Kernel Smut and False Smut: The Old-Emerging Diseases of Rice-A Review. PHYTOPATHOLOGY 2023; 113:931-944. [PMID: 36441871 DOI: 10.1094/phyto-06-22-0226-rvw] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Kernel smut, caused by Tilletia horrida, is a disease characterized by the replacement of rice grains with black sooty masses of teliospores or chlamydospores. Kernel smut differs from rice false smut, caused by Ustilaginoidea virens, in the color of chlamydospores. False smut is characterized by globose, velvety spore balls ranging from orangish yellow to greenish black in color. Both kernel smut and false smut have been persistent but are considered minor diseases in many countries since they were discovered in the late 1870s to the 1980s due to their sporadic outbreaks and limited economic impacts. In recent years, however, kernel smut and false smut have emerged as two of the most economically important diseases in rice, including organic rice, in many countries, especially in the United States. The increased use of susceptible rice cultivars, especially hybrids, excessive use of nitrogen fertilizer, and short crop rotations have resulted in an increase in kernel smut and false smut, causing significant losses in grain yield and quality. In this article, we provide a review of the distribution and economic importance of kernel smut; our current understanding of the taxonomy, biology, and epidemiology of kernel smut; and the genomics of the kernel smut fungus as compared with false smut and its causal agent. We also provide an update on the current management strategies of pathogen exclusion, cultivar resistance, fungicides, biological control, and cultural practices for kernel smut and false smut of rice.
Collapse
Affiliation(s)
- Sabin Khanal
- Texas A&M AgriLife Research Center, Beaumont, TX 77713
| | | | - Xin-Gen Zhou
- Texas A&M AgriLife Research Center, Beaumont, TX 77713
| |
Collapse
|
3
|
El-Nogoumy BA, Salem MA, El-Kot GA, Hamden S, Sehsah MD, Makhlouf AH, Nehela Y. Evaluation of the Impacts of Potassium Bicarbonate, Moringa oleifera Seed Extract, and Bacillus subtilis on Sugar Beet Powdery Mildew. PLANTS (BASEL, SWITZERLAND) 2022; 11:3258. [PMID: 36501297 PMCID: PMC9740183 DOI: 10.3390/plants11233258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Powdery mildew disease, caused by Erysiphe betae, is one of the most threatening diseases on sugar beet plants worldwide. It causes a great loss in the root yield, sugar percentage, and quality of produced sugar. In the current study, we aimed to evaluate the susceptibility of 25 sugar beet cultivars to infection with powdery mildew disease under Egyptian conditions. Moreover, we evaluated the impacts of three eco-friendly materials, including potassium bicarbonate (KHCO3; at 5 and 10 g L-1), Moringa oleifera seed extract (25 and 50 g L-1), and the biocontrol agent, Bacillus subtilis (108 cell suspension) against E. betae in two successive seasons 2020 and 2021. Our findings showed that there were significant differences between these 25 cultivars in their susceptibility to the disease under study. Using the detached leaves technique in vitro, B. subtilis showed strong antifungal activity against E. betae. Moreover, both concentrations of KHCO3 and moringa seed extract significantly reduced the disease severity. Under field conditions, tested treatments significantly reduced the severity of powdery mildew disease and prevented E. betae from producing its conidiophores and conidia. Scanning electron microscope examination of treated leaves demonstrated the presence of the decomposition of fungal hyphae, conidiophores, conidia, and the occurrence of plasmolysis to fungal cells and spores on the surface of the leaves. Furthermore, these treatments greatly improved the percent of sucrose and soluble solids content, as well as the enzymatic activity of peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase. It is noteworthy that treatment with moringa seed extract gave the best results, followed by potassium bicarbonate, then B. subtilis cell suspension. Generally, it is recommended to use the substances used in this research to combat powdery mildew to minimize or prevent the use of chemical fungicides harmful to public health and the environment.
Collapse
Affiliation(s)
- Baher A. El-Nogoumy
- Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohamed A. Salem
- Department of Chemistry, Faculty of Science & Arts, King Khalid University, Abha 62529, Saudi Arabia
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11284, Egypt
| | - Gabr A. El-Kot
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Salem Hamden
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohamed D. Sehsah
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Abeer H. Makhlouf
- Faculty of Agriculture, Minufiya University, Shibin El-Kom 32511, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
4
|
Sehsah MD, El-Kot GA, El-Nogoumy BA, Alorabi M, El-Shehawi AM, Salama NH, El-Tahan AM. Efficacy of Bacillus subtilis, Moringa oleifera seeds extract and potassium bicarbonate on Cercospora leaf spot on sugar beet. Saudi J Biol Sci 2022; 29:2219-2229. [PMID: 35531157 PMCID: PMC9072934 DOI: 10.1016/j.sjbs.2021.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Cercospora leaf spot caused by Cercospora beticola are among the most dangerous plant diseases on sugar beet plants. It causes heavy economic losses, whether on the yield of roots, the percentage of sugar in them, or the quality of sugar produced. In addition to the economic cost caused by chemical control, these chemical pesticides cause an imbalance in the ecosystem and harm the health of humans and animals. In an attempt to search for a safer method than pesticides and environmentally friendly, an evaluation of using biocontrol agents, Bacillus subtilis as cell suspension (108 cell/ml), was conducted in this study. Seeds extract of Moringa oleifera with two concentrations (25 and 50 g/L) and potassium bicarbonate at (5 and10 g/L (compared to fungicide Montoro 30% EC (Propiconazole 15% + Difenoconazole 15%). The evaluation results for twenty-five sugar beet varieties showed a significant discrepancy between these varieties in the extent of their susceptibility to infection with the disease under investigation. In-Vitro, B. subtilis induced an antagonist to C. beticola, and both M. oleifera seeds extract and potassium bicarbonate significantly reduced the linear growth of this pathogen. Under field conditions, the treatments used have given positive results in controlling Cercospora leaf spots. They significantly decreased the severity of disease and prevented C. beticola from creating conidiophores and conidiospores, along with examining their cell walls with the formation of plasmolysis of the fungus cells and reducing both the number and diameter of the spots on the surface leaves; this was demonstrated using a scanning electron microscope (SEM). It is worth noting that the best results obtained were most often when treated with M. oleifera seeds extract, followed by potassium bicarbonate, then cell suspension of B. subtilis. In addition, the percentage of the content of beet roots from total soluble solids and sucrose has improved significantly due to spraying sugar beet plants with the substances mentioned earlier. These treatments also contributed to a significant improvement in the enzymes polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase.
Collapse
Affiliation(s)
- Mohamed D. Sehsah
- Maize and Sugar Crops Diseases Research Department, Plant Pathology Research Institution, Agricultural Research Center, Giza, Egypt
| | - Gabr A. El-Kot
- Agriculture Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Baher A. El-Nogoumy
- Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nagwa H. Salama
- Maize and Sugar Crops Diseases Research Department, Plant Pathology Research Institution, Agricultural Research Center, Giza, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
- Corresponding author.
| |
Collapse
|
5
|
Elsharkawy MM, Suga H, Shimizu M. Systemic resistance induced by Phoma sp. GS8-3 and nanosilica against Cucumber mosaic virus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19029-19037. [PMID: 30328040 DOI: 10.1007/s11356-018-3321-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Cucumber mosaic virus (CMV) is a very serious hazard to vegetable production worldwide. This study is focused on evaluation of resistance stimulated by the plant growth-promoting fungus, Phoma sp. GS8-3, or nanosilica against CMV under pot and field conditions. The specific aim was to illustrate the mechanism of resistance stimulated by GS8-3 against CMV using microarray technology. Treatments with GS8-3 as well as nanosilica significantly decreased CMV severity and titer in tobacco and cucumber under pot and field conditions, respectively. Growth characters of tobacco and cucumber were significantly increased due to GS8-3 inoculation followed by nanosilica compared with control and BTH treatments. Microarray results showed highly upregulation of defense-related genes expression specially those related to heat shock proteins. Therefore, GS8-3 as well as nanosilica is suitable to serve as effective inducers against CMV in cucumber plants.
Collapse
Affiliation(s)
- Mohsen Mohamed Elsharkawy
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt.
| | - Haruhisa Suga
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu City, 501-1193, Japan
| | - Masafumi Shimizu
- Laboratory of Plant Pathology, The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
6
|
Mohsen ME, Tatsuya H, Masafumi S, Mitsuro H. Suppressive effects of a polymer sodium silicate solution on powdery mildew and root rot diseases of miniature rose. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajb2015.14649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|