1
|
Yu X, Yu RQ, Zhang X, Zhan F, Sun X, Wu Y. DDT exposure induces cell cycle arrest and apoptosis of skin fibroblasts from Indo-Pacific humpback dolphin via mitochondria dysfunction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105229. [PMID: 31255889 DOI: 10.1016/j.aquatox.2019.105229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 05/07/2023]
Abstract
Although the global use of the 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (p,p'-DDT) has been prohibited, its persistence in the environment has caused long-lasting exposure on marine mammals. Our previous studies revealed exceedingly high residue levels of DDTs in Indo-Pacific humpback dolphins (Sousa chinensis) from the Pearl River Estuary region, China. However, the molecular mechanisms of p,p'-DDT toxicity on the dolphin are largely unknown. This study conducted the first cytotoxicity effect exploration of p,p'-DDT on the dolphin skin fibroblasts (ScSFs) to enhance the understanding of the cellular and molecular regulation impacts. ScSF cells were exposed to p,p'-DDT (28∼168 μM) for 24, 48 and 72 h. The exposure remarkably decreased viability of ScSF cells, possibly due to the synergetic effects of cell cycle arrest and apoptosis via DNA damage and mitochondria dysfunction. The DNA damage and mitochondria dysfunction were likely triggered by an increase of cellular reactive oxygen species (ROS), alteration in mitochondrial membrane potential, reduction in the cellular ATP levels, decreased expression of the genes CDK1, CDK4, cyclin B1, cyclin D1 and apoptosis regulator Bcl-2, release of cytochrome c, and activation of caspase-3, caspase-8 and caspase-9. Moreover, caspase inhibitor displayed protective activity against p,p'-DDT-induced apoptosis, indicating that caspases played a central role in p,p'-DDT-triggered apoptosis in the ScSF cells. We hypothesize apoptosis likely plays a minor role in cytocidal effects induced by p,p'-DDT exposure, but the mechanisms remain unclear. Overall, this research provides new evidence of the cytotoxic mechanisms underlying p,p'-DDT exposure on humpback dolphin skin cells, and suggests that p,p'-DDT contamination is one of key health concern issues for the protection of this marine mammal.
Collapse
Affiliation(s)
- Xinjian Yu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Xiyang Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fengping Zhan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xian Sun
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yuping Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
2
|
Jasso-Pineda Y, Díaz-Barriga F, Yáñez-Estrada L, Pérez-Vázquez FJ, Pérez-Maldonado IN. DNA damage in Mexican children living in high-risk contaminated scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:38-48. [PMID: 25747362 DOI: 10.1016/j.scitotenv.2015.02.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/21/2015] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to evaluate the deoxyribonucleic acid (DNA) damage (as a biomarker of biological effects) in children living in areas at high risk of contamination in Mexico using the comet assay. The alkaline comet assay was performed in order to assess DNA damage levels in blood cells of 276 children living in eleven communities in four states of Mexico. Moreover, levels of arsenic and 1-hydroxypyrene (1-OHP) in urine and lead and total DDT [sum of 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT)] in blood were quantified. We found urinary 1-OHP levels between <LOD and 14.5 μmol/mol creatinine; for arsenic, the urinary levels were 3.5-180 μg/g creatinine (range). Lead levels in blood ranged from 0.5 to 24 μg/dL and finally, the levels of total DDT (DDE and DDT) ranged from <LOD to 32,000 ng/g lipid. Regarding DNA damage (comet assay), the most important finding in our study was that children exposed to a chemical mixture [high levels of exposure to polycyclic aromatic hydrocarbons (PAHs) and DDT were found] had the significant highest DNA damage level (p<0.05) in their blood cells (olive tail moment=7.5±3.5), when compared with DNA damage levels in children living in the other scenarios assessed in this work. Finally, significant correlations were observed between urinary arsenic levels (r=0.32, p<0.05); urinary 1-OHP levels (r=0.65, p<0.01); total DDT in blood levels (r=0.59, p<0.01) and DNA damage. In conclusion, the data indicates that children living in areas which are at high risk of contamination showed high levels of biomarkers of exposure in urine or blood. Moreover, the exposure levels contribute to DNA damage and suggest an increased health risk in studied sites at risk of great pollution.
Collapse
Affiliation(s)
- Yolanda Jasso-Pineda
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, Mexico; Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Mexico
| | - Fernando Díaz-Barriga
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | | | - Francisco Javier Pérez-Vázquez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | - Ivan Nelinho Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico; Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí, Mexico.
| |
Collapse
|
3
|
He X, Jing Y, Wang J, Li K, Yang Q, Zhao Y, Li R, Ge J, Qiu X, Li G. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations. ENVIRONMENTAL RESEARCH 2015; 137:458-466. [PMID: 25679774 DOI: 10.1016/j.envres.2014.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Electronic waste (e-waste) has created a worldwide environmental and health problem, by generating a diverse group of hazardous compounds such as persistent organic pollutants (POPs). Our previous studies demonstrated that populations from e-waste exposed region have a significantly higher level of chromosomal aberrancy and incidence of DNA damage. In this study, we further demonstrated that various POPs persisted at a significantly higher concentration in the exposed group than those in the unexposed group. The level of reactive oxygen species and micronucleus rate were also significantly elevated in the exposed group. RNA sequencing analysis revealed 31 genes in DNA damage responses and repair pathways that were differentially expressed between the two groups (Log2 ratio >1 or <-1). Our data demonstrated that both females and males of the exposed group have activated a series of DNA damage response genes; however many important DNA repair pathways have been dysregulated. Expressions of NEIL1/3 and RPA3, which are critical in initiating base pair and nucleotide excision repairs respectively, have been downregulated in both females and males of the exposed group. In contrast, expression of RNF8, an E3 ligase involved in an error prone non-homologous end joining repair for DNA double strand break, was upregulated in both genders of the exposed group. The other genes appeared to be differentially expressed only when the males or females of the two groups were compared respectively. Importantly, the expression of cell cycle regulatory gene CDC25A that has been implicated in multiple kinds of malignant transformation was significantly upregulated among the exposed males while downregulated among the exposed females. In conclusion, our studies have demonstrated significant correlations between e-waste disposing and POPs accumulation, DNA lesions and dysregulation of multiple DNA damage repair mechanisms in the residents of the e-waste exposed region.
Collapse
Affiliation(s)
- Xiaobo He
- Basic Medical College, Tianjin Medical University, Tianjin 300070, PR China
| | - Yaqing Jing
- Basic Medical College, Tianjin Medical University, Tianjin 300070, PR China
| | - Jianhai Wang
- Basic Medical College, Tianjin Medical University, Tianjin 300070, PR China
| | - Keqiu Li
- Basic Medical College, Tianjin Medical University, Tianjin 300070, PR China
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, PR China
| | - Yuxia Zhao
- Basic Medical College, Tianjin Medical University, Tianjin 300070, PR China
| | - Ran Li
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Jie Ge
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, PR China; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, PR China.
| | - Guang Li
- Basic Medical College, Tianjin Medical University, Tianjin 300070, PR China.
| |
Collapse
|
4
|
Gerić M, Ceraj-Cerić N, Gajski G, Vasilić Ž, Capuder Ž, Garaj-Vrhovac V. Cytogenetic status of human lymphocytes after exposure to low concentrations of p,p'-DDT, and its metabolites (p,p'-DDE, and p,p'-DDD) in vitro. CHEMOSPHERE 2012; 87:1288-1294. [PMID: 22354074 DOI: 10.1016/j.chemosphere.2012.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/27/2011] [Accepted: 01/20/2012] [Indexed: 05/31/2023]
Abstract
Despite that the use of DDT has been restricted for more than 40 years to malaria affected areas, low doses of this pesticide and its metabolites DDE and DDD can be found in the environment around the world. Although it has been shown that these pollutants induce cell and DNA damage, the mechanisms of their cytogenotoxic activity remains largely unknown. This study looks into their possible genotoxic effects, at doses that can be found in body fluids, on human lymphocytes using the cytokinesis-block micronucleus assay and the comet assay. After exposure for 1, 6, and 24 h compounds p,p'-DDT (0.1 μg mL(-1)), p,p'-DDE (4.1 μg mL(-1)), and p,p'-DDD (3.9 μg mL(-1)) showed increase in DNA damage. The most significant results were observed at exposure period of 24 h where number of micronucleated cells increased from control 2.5±0.71 to 23.5±3.54, 13.5±0.71, and 16.5±6.36 for DDT, DDE, and DDD, respectively. Similar effect was observed using comet test where the percentage of DNA in comets tail increased from control 1.81±0.16 to 17.24±0.55, 11.21±0.56 and 9.28±0.50 for each compound, respectively. At the same time Fpg-comet assay failed to report induction of oxidative DNA damage of these pollutants. Additionally, the type of cell death was determined using diffusion assay and necrosis dominated. Our findings suggest that even at low concentrations, these pesticides could induce cytogenetic damage to human peripheral blood lymphocytes and in that manner have the impact on human health as well.
Collapse
Affiliation(s)
- Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
5
|
Shi Y, Zhang JH, Jiang M, Zhu LH, Tan HQ, Lu B. Synergistic genotoxicity caused by low concentration of titanium dioxide nanoparticles and p,p'-DDT in human hepatocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:192-204. [PMID: 19708068 DOI: 10.1002/em.20527] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The use of titanium dioxide nanoparticles (nano-TiO(2)) for the degradation of dichlorodiphenyltrichloroethane (p,p'-DDT) increases the risk of exposure to trace nano-TiO(2) and p,p'-DDT mixtures. The interaction of p,p'-DDT and nano-TiO(2) at low concentrations may alter toxic response relative to nano-TiO(2) or p,p'-DDT alone. In this work, the combined genotoxicity of trace nano-TiO(2) and p,p'-DDT on human embryo L-02 hepatocytes without photoactivation was studied. Nano-TiO(2) (0.1 g/L) was mixed with 0.01-1 mmol/L p,p'-DDT to determine adsorption isotherms. L-02 cells were exposed to different levels of p,p'-DDT (0, 0.001, 0.01, and 0.1 mumol/L) and nano-TiO(2) (0, 0.01, 0.1, and 1 microg/mL) respectively. The adsorption of p,p'-DDT by nano-TiO(2) was approximately 0.3 mmol/g. Cell viability, apoptosis, and DNA double strand breaks were similar among all test groups. Nano-TiO(2) alone (0.01-1 microg/mL) increased the levels of oxidative stress and oxidative DNA adducts (8-OHdG), but it did not induce DNA breaks or chromosome damage. Addition of trace nano-TiO(2) with trace p,p'-DDT synergistically enhanced genotoxicity via increasing oxidative stress, oxidative DNA adducts, DNA breaks, and chromosome damage in L-02 cells. Low concentrations of nano-TiO(2) and p,p'-DDT increased oxidativestress by reactive oxygen species (ROS) formation and lipid oxidation. Oxidative stress is a major pathway for DNA and chromosome damage. Dose-dependent synergistic genotoxicity induced by combined exposure of trace p,p'-DDT and nano-TiO(2) suggests a potential environmental risk of nano-TiO(2) assisted photocatalysis.
Collapse
Affiliation(s)
- Yun Shi
- MOE Key Laboratory of Environment & Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
6
|
Gajski G, Garaj-Vrhovac V. Genotoxic potential of bee venom (Apis Mellifera) on human peripheral blood lymphocytes in vitro using single cell gel electrophoresis assay. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2008; 43:1279-1287. [PMID: 18642151 DOI: 10.1080/10934520802177862] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bee venom (BV) has been known to have therapeutic applications in traditional medicine to treat variety of diseases. It is also known that bee venom possesses anti-inflammatory and anticancer effects and that it can inhibit proliferation and induces apoptosis in cancer cells, but there is lack of information regarding genotoxicity of whole bee venom on normal human cells. In the present study, peripheral blood human lymphocytes from healthy donor were exposed in vitro to different concentration (5, 10, 25, 50 and 100 micro g/mL) of whole bee venom at different time periods (1, 6 and 24 hours). The single cell gel electrophoresis (SCGE) assay was used to evaluate the genotoxicity towards human cells. Results showed statistically significant increase in DNA damage caused in BV treated human lymphocytes compared to corresponding control cells for the tail length and tail moment. These results show that the extent of DNA damage, determined by the use of single cell gel electrophoresis is time and dose dependent. Based on the results it is clear that whole bee venom induces DNA damage and has genotoxic potential on human peripheral blood lymphocytes in vitro.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia.
| | | |
Collapse
|
7
|
Sapbamrer R, Prapamontol T, Prakobvitayakit O, Vaneesorn Y, Mangklabruks A, Hock B. Placental transfer of DDT in mother-infant pairs from Northern Thailand. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2008; 43:484-489. [PMID: 18665984 DOI: 10.1080/03601230802174615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present study objective was to investigate ratios and correlation coefficients between dichlorodiphenyltrichloroethane (DDT) compounds in cord and maternal sera of mother-infant pairs from northern Thailand. The study site was located in Chiang Dao District of Chiang Mai Province which was an agricultural and former malaria endemic area. DDT compounds were analyzed in 88 cord and maternal serum samples using gas chromatography-electron capture detection (GC-ECD). p,p'-DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene) was the major component and detected in every cord and maternal serum samples with geometric means of 1,255 and 1,793 n g(-1) lipids, respectively. p,p'-DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) was detected at 89.8 and 100% of cord and maternal serum samples, respectively. The second and third highest levels detected were p,p'-DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane) and p,p'-DDT, respectively. The ratios between cord and maternal sera for p,p'-DDE, p,p'-DDT, and p,p'-DDD that were less than 1 had high correlation coefficients (ratio = 0.70, r = 0.82 for p,p'-DDE, ratio = 0.62, r = 0.66 for p,p'-DDT, and ratio = 0.79, r = 0.78 for p,p'-DDD). The high correlation coefficients indicate that cord serum levels of DDT compounds could be accurately estimated from maternal serum levels. It can be concluded that cord serum levels of p,p'-DDE, p,p'-DDT, and p,p'-DDD were approximately 70%, 62%, and 79% of maternal serum levels, respectively. Furthermore, our findings can be applied in public health to monitor and evaluate risk among infants from high DDT exposure area.
Collapse
Affiliation(s)
- Ratana Sapbamrer
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | |
Collapse
|