1
|
Antunes DR, Forini MMLH, Biscalchim ÉR, Lima PHC, Cavalcante LAF, Teixeira Filho MCM, Tripathi DK, Caballero JP, Grillo R. Polysaccharide-based sustainable hydrogel spheres for controlled release of agricultural inputs. Int J Biol Macromol 2024; 279:135202. [PMID: 39216580 DOI: 10.1016/j.ijbiomac.2024.135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Producing food in quantity and quality to meet the growing population demand is a challenge for the coming years. In addition to the need to improve the use and efficiency of conventional agricultural inputs, we face climate change and disparity in access to food. In this context, creating innovative, efficient, and ecologically approaches is necessary to transform this global scenario. Several delivery systems are being developed to encapsulate agrochemicals, aiming to improve the controlled release of active ingredients and protect them against environmental biotic and abiotic factors. Among these systems, hydrogel spheres are particularly notable for their ability to be fabricated from biodegradable materials, allowing the encapsulation of molecules, nanomaterials, and even organisms (e.g., bacteria and fungi). This review provides an overview of the latest progress in developing polysaccharide-based hydrogel spheres for agriculture. In addition, we describe methods for preparing hydrogel spheres and discuss the encapsulation and release of agricultural inputs in the field. Finally, we put hydrogel spheres into perspective and seek to highlight some current challenges in the field to spark new inspiration and improve the development of environmentally friendly and cost-effective delivery systems for the agricultural sector.
Collapse
Affiliation(s)
- Débora R Antunes
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Mariana M L H Forini
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Érica R Biscalchim
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Pedro H C Lima
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Luiz A F Cavalcante
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| | - Marcelo C M Teixeira Filho
- São Paulo State University (UNESP), Department of Plant Protection, Rural Engineering and Soils, School of Engineering, Ilha Solteira, SP 15385-000, Brazil
| | - Durgesh K Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Javier Pitti Caballero
- Instituto de Innovación Agropecuaria de Panamá (IDIAP), Estación Experimental de Cerro Punta, Centro de Innovación Agropecuaria de Chiriquí, Provincia de Chiriquí, Panamá
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-007, Brazil
| |
Collapse
|
2
|
Lin F, Mao Y, Zhao F, Idris AL, Liu Q, Zou S, Guan X, Huang T. Towards Sustainable Green Adjuvants for Microbial Pesticides: Recent Progress, Upcoming Challenges, and Future Perspectives. Microorganisms 2023; 11:microorganisms11020364. [PMID: 36838328 PMCID: PMC9965284 DOI: 10.3390/microorganisms11020364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Microbial pesticides can be significantly improved by adjuvants. At present, microbial pesticide formulations are mainly wettable powders and suspension concentrations, which are usually produced with adjuvants such as surfactants, carriers, protective agents, and nutritional adjuvants. Surfactants can improve the tension between liquid pesticides and crop surfaces, resulting in stronger permeability and wettability of the formulations. Carriers are inert components of loaded or diluted pesticides, which can control the release of active components at appropriate times. Protective agents are able to help microorganisms to resist in adverse environments. Nutritional adjuvants are used to provide nutrients for microorganisms in microbial pesticides. Most of the adjuvants used in microbial pesticides still refer to those of chemical pesticides. However, some adjuvants may have harmful effects on non-target organisms and ecological environments. Herein, in order to promote research and improvement of microbial pesticides, the types of microbial pesticide formulations were briefly reviewed, and research progress of adjuvants and their applications in microbial pesticides were highlighted, the challenges and the future perspectives towards sustainable green adjuvants of microbial pesticides were also discussed in this review.
Collapse
|
3
|
Singh G, Ramadass K, Sooriyakumar P, Hettithanthri O, Vithange M, Bolan N, Tavakkoli E, Van Zwieten L, Vinu A. Nanoporous materials for pesticide formulation and delivery in the agricultural sector. J Control Release 2022; 343:187-206. [DOI: 10.1016/j.jconrel.2022.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
|
4
|
Mahajan R, Selim A, Neethu KM, Sharma S, Shanmugam V, Jayamurugan G. A systematic study to unravel the potential of using polysaccharides based organic-nanoparticles versus hybrid-nanoparticles for pesticide delivery. NANOTECHNOLOGY 2021; 32:475704. [PMID: 34371483 DOI: 10.1088/1361-6528/ac1bdc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
To daze conventional pesticide release limitations, nanotechnology-mediated pesticide delivery using natural polymers has been actively investigated. However, the lack of information on what are the beneficial/non-beneficial aspects of using hybrid- and organic-nanoparticles (NP) and among the polysaccharides which are better suited concerning pesticide loading efficiency (PLE wt%), entrapment efficiency, and sustained pesticide release (SPR %) has prompted us to investigate this study. In this report, we systematically investigated a series of polysaccharides such as starch (S), cellulose (C), aminocellulose (AC), and sodium carboxymethylcellulose (NaCMC) coated on magnetite NP (MNP, Fe3O4) and complete organic nanocarrier systems (starch and cellulose) that have no MNP part were compared for the PLE wt% and SPR % efficiencies for chlorpyrifos (ChP) insecticide. Overall, all nanocarriers (NCs) have shown good to excellent PLE wt% due to the smaller-sized NP obtained through optimal conditions. However, among the hybrid polysaccharides studied, starch MNP has shown a maximum PLE of 111 wt% in comparison with other polysaccharides (80-94 wt%) coated hybrid-NCs as well as with organic-NCs (81-87 wt%). The use of inorganic support does improve the PLE wt% markedly for starch but not for cellulose derivatives. Similarly, the SPR results of S-NP showed a remarkably better sustained release profile for ChP of 88% in 14 d. In contrast, other unfunctionalized and functionalized celluloses exhibited poor release profiles of 60%-20% for the same period. This study may help the researchers choose the right system for designing and achieving enhanced pesticide efficiency.
Collapse
Affiliation(s)
- Ritu Mahajan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Abdul Selim
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - K M Neethu
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Sandeep Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Govindasamy Jayamurugan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| |
Collapse
|
5
|
Zboray S, Efimenko K, Jones JL, Genzer J. Functional Gels Containing Hydroxamic Acid Degrade Organophosphates in Aqueous Solutions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steven Zboray
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Kirill Efimenko
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jacob L. Jones
- Department of Materials Science & Engineering, Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
6
|
Eltaweil AS, El-Tawil AM, Abd El-Monaem EM, El-Subruiti GM. Zero Valent Iron Nanoparticle-Loaded Nanobentonite Intercalated Carboxymethyl Chitosan for Efficient Removal of Both Anionic and Cationic Dyes. ACS OMEGA 2021; 6:6348-6360. [PMID: 33718725 PMCID: PMC7948244 DOI: 10.1021/acsomega.0c06251] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 05/12/2023]
Abstract
A zero valent iron-loaded nano-bentonite intercalated carboxymethyl chitosan (nZVI@nBent-CMC) composite was fabricated and characterized by FT-IR, TEM, TEM-EDX, XRD, BET surface area, and zeta potential measurements. The as-fabricated nZVI@nBent-CMC composite exhibited excellent removal efficiency for both anionic Congo red (CR) dye and cationic crystal violet (CV) dye. The maximum uptake capacities of CR and CV onto the nZVI@nBent-CMC composite were found to be 884.95 and 505.05 mg/g, respectively. The adsorption process of both dyes well fitted with the Langmuir isotherm model and pseudo-second order kinetic model. Thermodynamic data clarified that the adsorptions of both CR and CV onto the nZVI@nBent-CMC composite are spontaneous processes. Moreover, the adsorption of CR onto the nZVI@nBent-CMC composite was found to be an exothermic process while that of CV is an endothermic process. The nZVI@nBent-CMC composite also exhibited excellent reusability for both studied dyes without noticeable loss in the removal efficiency, suggesting its validity to remove both anionic and cationic dyes from wastewater.
Collapse
Affiliation(s)
- Abdelazeem S. Eltaweil
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Ashraf M. El-Tawil
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Eman M. Abd El-Monaem
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Gehan M. El-Subruiti
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| |
Collapse
|
7
|
Jain SK, Dutta A, Kumar J, Shakil NA. Preparation and characterization of dicarboxylic acid modified starch-clay composites as carriers for pesticide delivery. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
8
|
Encapsulation of acidified chitosan within partially cross-linked natural rubber matrices and their potential slow-release application. J RUBBER RES 2020. [DOI: 10.1007/s42464-020-00054-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Carboxymethylcellulose-coated magnesium-layered hydroxide nanocomposite for controlled release of 3-(4-methoxyphenyl)propionic acid. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Shen Z, Wen H, Zhou H, Hao L, Chen H, Zhou X. Coordination bonding-based polydopamine-modified mesoporous silica for sustained avermectin release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110073. [DOI: 10.1016/j.msec.2019.110073] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/10/2019] [Accepted: 08/10/2019] [Indexed: 01/15/2023]
|
11
|
Huang Y, Hu Q, Cui G, Guo X, Wei B, Gan C, Li W, Mo D, Lu R, Cui J. Release-controlled microcapsules of thiamethoxam encapsulated in beeswax and their application in field. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:342-354. [PMID: 31790325 DOI: 10.1080/03601234.2019.1697588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using beeswax as wrapping matrix, two types of release-controlled TM (thiamethoxam)/BK(beeswax-kaolin) microcapsules were prepared by adsorbing TM on kaolin and then encapsulated with beeswax, or directly wrapping TM with beeswax. The structure and morphology of the TM/BK microcapsules were characterized. The effects of different preparation methods, the particle size, pH conditions and different additives on the release property of the TM/BK microcapsules were investigated in water and soil column to compare the advantages of the two approaches. Finally, the insecticidal effect of the TM/BK microcapsules against sugarcane borer and rice planthopper was tested. The results show that the TM/BK microcapsules have a better sustained-release in both water and soil, and the release rate is different under different pH conditions. In addition, the releasing time of the TM/BK microcapsules can be modified by different preparation methods and combination of different additives. In the field applications, the insecticidal activity of the TM/BK microcapsules was better than that of non-sustained control group. Especially in the rice field test, 45 days after the application, the control group lost the activity against rice planthopper because of drug loss, whereas the TM/BK microcapsule group still retained about 90% of the insecticidal activity. The results suggest that the microcapsules have better agricultural application for insect control.
Collapse
Affiliation(s)
- Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Qiang Hu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Guoqin Cui
- Guangxi Tianyuan Biochemical Co. Ltd, Nanning, PR China
| | - Xiaoyan Guo
- Guangxi Tianyuan Biochemical Co. Ltd, Nanning, PR China
| | - Bangzhi Wei
- Guangxi Tianyuan Biochemical Co. Ltd, Nanning, PR China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Weiguo Li
- Guangxi Tianyuan Biochemical Co. Ltd, Nanning, PR China
| | - Dongmei Mo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
| | - Rui Lu
- Guangxi Tianyuan Biochemical Co. Ltd, Nanning, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, PR China
- College of petroleum and chemical Engineering, Beibuwan University, Qinzhou, PR China
| |
Collapse
|
12
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
13
|
Neri-Badang MC, Chakraborty S. Carbohydrate polymers as controlled release devices for pesticides. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1568449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maria Cleofe Neri-Badang
- Department of Chemistry, School of Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
- Pharmacy/Chemistry Program, University of the Immaculate Conception, Davao City, Philippines
| | - Soma Chakraborty
- Department of Chemistry, School of Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| |
Collapse
|
14
|
Merzendorfer H. Chitosan Derivatives and Grafted Adjuncts with Unique Properties. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Yan X, Wang Y, Liu H, Li R, Qian C. Synthesis and Characterization of Melamine-Formaldehyde Microcapsules Containing Pyraclostrobin by In situ Polymerization. POLYMER SCIENCE SERIES B 2018. [DOI: 10.1134/s156009041806012x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Taverna ME, Busatto CA, Lescano MR, Nicolau VV, Zalazar CS, Meira GR, Estenoz DA. Microparticles based on ionic and organosolv lignins for the controlled release of atrazine. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:139-147. [PMID: 30014909 DOI: 10.1016/j.jhazmat.2018.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Lignins are natural polymers of the lignocellulosic biomass. Nowadays, there is a growing interest in developing value-added products based on lignins due to their renewability, low cost and abundance. In this work, lignin microspheres from organosolv and ionic isolation processes were prepared for the controlled release of atrazine. Microspheres were prepared by the solvent extraction/evaporation technique. The controlled release of atrazine from organosolv and ionic lignins microparticles was studied in water. Mobility experiments were performed in an agricultural soil from Argentina. The results showed that microparticles prepared using dichloromethane as the dispersed phase were spherical, while lignins dispersed in ethyl acetate produce irregular microparticles. Organosolv lignin microparticles presented higher encapsulation efficiency for all herbicide loads. About 98% and 95% of atrazine was released in 24 and 48 h approximately from organosolv and ionic lignin microparticles, respectively. The release profiles of atrazine from both lignin microparticles were not affected by the herbicide load. Atrazine mobility experiments in soil showed that about 80% of free atrazine was leached in 37 days, while 65.0% and 59.7% of the herbicide was leached from ionic and organosolv lignin microparticles, respectively. Thus, atrazine-loaded microparticles could reduce leaching compared to a commercial formulation of free atrazine.
Collapse
Affiliation(s)
- María Eugenia Taverna
- INTEC (UNL-CONICET), Güemes 3450, (3000) Santa Fe, Argentina; UTN Regional San Francisco, Av. de la Universidad 501, (2400) San Francisco, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
17
|
Flores-Céspedes F, Daza-Fernández I, Villafranca-Sánchez M, Fernández-Pérez M, Morillo E, Undabeytia T. Lignin and ethylcellulose in controlled release formulations to reduce leaching of chloridazon and metribuzin in light-textured soils. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:227-234. [PMID: 28961503 DOI: 10.1016/j.jhazmat.2017.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
In this research, controlled release formulations (CRFs) of the herbicides chloridazon and metribuzin, identified as potential leachers, have been evaluated in soils with different texture. To prepare the CRFs, ethylcellulose (EC) and dibutylsebacate (DBS) have been used as coating agents in lignin-polyethylene glycol based formulations. Mobility experiments have been carried out in two light textured soils (sandy and sandy-loam). Breakthrough curves have shown that the use of CRFs reduces the presence of chloridazon and metribuzin in the leachate compared to technical and commercial products, being the lignin CRF coated with EC and DBS the most efficient to diminish the herbicide leaching. Mass balance study has shown a higher amount of chloridazon and metribuzin recovered in soils when these herbicides were tested as CRFs compared to technical and commercial products. The gradual release of herbicides from the CRFs resulting in a rather available levels of chloridazon and metribuzin in soil for a longer time. A good correlation between percentages of herbicide recovered in leachates and T50 values (time corresponding to 50% release of herbicide in water) was obtained, which allows to select the most appropriate CRF in each agro-environmental practice to reduce the potential pollution of groundwater by chloridazon and metribuzin.
Collapse
Affiliation(s)
- F Flores-Céspedes
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Agrifood Campus of International Excellence (ceiA3), Crta. Sacramento s/n, 04120 Almería, Spain.
| | - I Daza-Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Agrifood Campus of International Excellence (ceiA3), Crta. Sacramento s/n, 04120 Almería, Spain.
| | - M Villafranca-Sánchez
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Agrifood Campus of International Excellence (ceiA3), Crta. Sacramento s/n, 04120 Almería, Spain.
| | - M Fernández-Pérez
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Agrifood Campus of International Excellence (ceiA3), Crta. Sacramento s/n, 04120 Almería, Spain.
| | - E Morillo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC) Av. Reina Mercedes, 10, 41012 Sevilla, Spain.
| | - T Undabeytia
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC) Av. Reina Mercedes, 10, 41012 Sevilla, Spain.
| |
Collapse
|
18
|
Preparation of a biodegradable poly(vinyl alcohol)-starch composite film and its application in pesticide controlled release. J Appl Polym Sci 2017. [DOI: 10.1002/app.45051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
|
20
|
N,N-dimethylhexadecyl carboxymethyl chitosan as a potential carrier agent for rotenone. Int J Biol Macromol 2016; 88:263-72. [DOI: 10.1016/j.ijbiomac.2016.03.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022]
|
21
|
Wilpiszewska K, Spychaj T, Paździoch W. Carboxymethyl starch/montmorillonite composite microparticles: Properties and controlled release of isoproturon. Carbohydr Polym 2016; 136:101-6. [DOI: 10.1016/j.carbpol.2015.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 11/29/2022]
|
22
|
Kashyap PL, Xiang X, Heiden P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 2015; 77:36-51. [DOI: 10.1016/j.ijbiomac.2015.02.039] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/03/2015] [Accepted: 02/16/2015] [Indexed: 12/20/2022]
|
23
|
Chevillard A, Angellier-Coussy H, Guillard V, Bertrand C, Gontard N, Gastaldi E. Biodegradable herbicide delivery systems with slow diffusion in soil and UV protection properties. PEST MANAGEMENT SCIENCE 2014; 70:1697-1705. [PMID: 24323837 DOI: 10.1002/ps.3705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND New herbicidal formulations were designed by combining wheat gluten (WG), two montmorillonites (MMTs) (unmodified and organically modified) and a model pesticide (ethofumesate), and their performances were assessed through an integrative study conducted in soil using an experimental methodology with data modelling. RESULTS All the WG formulations tested were effective in decreasing the apparent diffusivity of ethofumesate in soil in comparison with the non-formulated active substance. The slow-release effect was significantly more pronounced in the presence of the organically modified MMT, confirming the importance of sorption mechanisms to reduce ethofumesate diffusion. The bioassays undertaken on watercress to evaluate herbicidal antigerminating performances showed that all the WG formulations (with or without MMT) were more effective than both the commercial formulation and the non-formulated ethofumesate, whatever the concentration tested. To explain such results, it was proposed that WG formulations would enable ethofumesate to be more available and thus more effective in inhibiting seed germination, as they would be less prone to be leached by water transport due to watering and also less subject to photodegradation. CONCLUSION The use of pesticide formulations based on wheat gluten and nanoclays appeared to be a promising strategy both to reduce the mobility of pesticides in soil and to protect UV-photosensitive pesticides from photodegradation.
Collapse
|
24
|
Corrêa GG, Morais EC, Brambilla R, Bernardes AA, Radtke C, Dezen D, Júnior AV, Fronza N, Santos JHZD. Effects of the sol-gel route on the structural characteristics and antibacterial activity of silica-encapsulated gentamicin. Colloids Surf B Biointerfaces 2014; 116:510-7. [PMID: 24572495 DOI: 10.1016/j.colsurfb.2014.01.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/23/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
The effects of sol-gel processes, i.e., acid-catalyzed gelation, base-catalyzed gelation and base-catalyzed precipitation routes, on the encapsulation of gentamicin were investigated. The resulting xerogels were characterized using a series of complementary instrumental techniques, i.e., the adsorption/desorption of nitrogen, small-angle X-ray scattering, Fourier transform infrared spectroscopy, diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy. The encapsulated gentamicin samples were tested against a series of Gram-positive and Gram-negative bacterial strains. The best antimicrobial activity was observed with the encapsulated gentamicin that was prepared via the precipitation route, even in comparison with the neat antibiotic, especially in the case of the Gram-positive strain Staphylococcus aureus. The gentamicin concentration on the outermost surface and the zeta potential were identified as factors that affected the highest efficiency, as observed in the case of encapsulation via the base-catalyzed process.
Collapse
Affiliation(s)
- G G Corrêa
- Universidade Federal do Rio Grande do Sul, Instituto de Química, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - E C Morais
- Universidade Federal do Rio Grande do Sul, Instituto de Química, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - R Brambilla
- Universidade Federal do Rio Grande do Sul, Instituto de Química, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - A A Bernardes
- Universidade Federal do Rio Grande do Sul, Instituto de Química, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - C Radtke
- Universidade Federal do Rio Grande do Sul, Instituto de Química, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - D Dezen
- Instituto Federal de Educação, Ciência e Tecnologia Catarinense, Campus Concórdia, SC, Brazil
| | - A V Júnior
- Instituto Federal de Educação, Ciência e Tecnologia Catarinense, Campus Concórdia, SC, Brazil
| | - N Fronza
- Instituto Federal de Educação, Ciência e Tecnologia Catarinense, Campus Concórdia, SC, Brazil
| | - J H Z Dos Santos
- Universidade Federal do Rio Grande do Sul, Instituto de Química, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil.
| |
Collapse
|
25
|
Wang Y, Zhang D. Bioinspired assembly of layered double hydroxide/carboxymethyl chitosan bionanocomposite hydrogel films. J Mater Chem B 2014; 2:1024-1030. [DOI: 10.1039/c3tb21608j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layered double hydroxide/carboxymethyl chitosan bionanocomposite hydrogel films with high swelling stability were fabricated by the bioinspired assembly technique.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao 266071, P.R. China
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao 266071, P.R. China
| |
Collapse
|
26
|
Sahoo S, Manjaiah KM, Datta SC, Ahmed Shabeer TP, Kumar J. Kinetics of metribuzin release from bentonite-polymer composites in water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:591-600. [PMID: 24901962 DOI: 10.1080/03601234.2014.911578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A series of bentonite polymer-composites (BPCs) loaded with metribuzin were studied for their controlled release in aqueous medium. The release of active ingredient from BPCs was significantly lower as compared to commercial metribuzin formulation. The results revealed that the cumulative metribuzin release was highest (81%) from the BPCs containing 8% clay (commercial bentonite) and 2% metribuzin which correspond to the lowest (14 days) half-life values i.e., time required for 50% release of active ingredient (t1/2). The metribuzin release from the BPCs decreased with increased concentration of clays in polymer matrix and the release was further decreased with BPCs prepared with pure nano-bentonite. BPCs containing 12% clay and 2% metribuzin showed maximum t1/2 values i.e., 25 and 51 days for commercial bentonite and pure nano-bentonite as clay sources, respectively. The differential behaviour in the metribuzin release rates from BPCs was ascribed due to variations in crosslinking of metribuzin in the composites. As metribuzin release was found to be slower in BPCs compared to commercial formulation, it could be used for control of weeds tailored to different crops.
Collapse
Affiliation(s)
- Sonalika Sahoo
- a Division of Soil Science and Agricultural Chemistry, Indian Agricultural Research Institute , New Delhi , India
| | | | | | | | | |
Collapse
|
27
|
Flores Céspedes F, Pérez García S, Villafranca Sánchez M, Fernández Pérez M. Bentonite and anthracite in alginate-based controlled release formulations to reduce leaching of chloridazon and metribuzin in a calcareous soil. CHEMOSPHERE 2013; 92:918-924. [PMID: 23562547 DOI: 10.1016/j.chemosphere.2013.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/21/2013] [Accepted: 03/04/2013] [Indexed: 06/02/2023]
Abstract
The leaching of herbicides through soil can be minimized using controlled release formulations (CRFs). In this research, bentonite and anthracite have been used as modifying agents in alginate-based CRFs prepared with chloridazon and metribuzin. These CRFs have been evaluated in a calcareous soil. The Kf and Koc values obtained from sorption experiments in soil have demonstrated a high leaching potential for both herbicides, mainly for metribuzin. Release kinetics in soil have showed that the control of release rate of chloridazon and metribuzin was possible by using bentonite and anthracite in CRFs, being this effect greater when we use anthracite as modifying sorbent. Using an empirical equation, the time taken for 50% of the active ingredient to be released (T50(soil)) was calculated. T50 values ranged between 2.88 d for metribuzin-bentonite alginate-based granules and 14.37 d for chloridazon-anthracite alginate-based granules, being the release rate higher in metribuzin CRFs than in those prepared with chloridazon, which has lower water solubility. Besides, a linear correlation between T50 values in water and soil was obtained. Mobility experiments carried out in a calcareous soil have shown that the use of CRFs reduces the presence of herbicides in the leachate compared to technical products, mainly for chloridazon. We found that one could design a right profile in the release rate of active ingredients from CRFs in each agro-environmental situation, and thus prevent the environmental pollution derived from the use of chloridazon and metribuzin.
Collapse
Affiliation(s)
- F Flores Céspedes
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Crta. Sacramento s/n, 04120 Almería, Spain.
| | | | | | | |
Collapse
|
28
|
Fabrication of titanate nanotubes/iron oxide magnetic composite for the high efficient capture of radionuclides: a case investigation of 109Cd(II). J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-013-2598-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Bagle AV, Jadhav RS, Gite VV, Hundiwale DG, Mahulikar PP. Controlled Release Study of Phenol Formaldehyde Microcapsules Containing Neem Oil as an Insecticide. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2012.719142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Liu Y, Sun Y, He S, Zhu Y, Ao M, Li J, Cao Y. Synthesis and characterization of gibberellin-chitosan conjugate for controlled-release applications. Int J Biol Macromol 2013; 57:213-7. [PMID: 23511059 DOI: 10.1016/j.ijbiomac.2013.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/22/2013] [Accepted: 03/09/2013] [Indexed: 01/04/2023]
Abstract
Controlled release formulations (CRFs) are promising in improving the efficiency of pesticide and minimizing the spreading of hazardous residues in environment. By coupling with the pesticide covalently, chitosan can be used as a carrier material for the vulnerable ingredient. For the first time, gibberellic acid (GA3), one of plant growth regulators, was attached to chitosan (CS) to form a GA3-CS conjugate via the formation of an amide bound using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide. The novel conjugate was structurally characterized by fourier transform infrared spectroscopy, ultraviolet spectrophotometer, and thermal gravimetric analysis. Effects of pH, temperature, and UV irradiation on the release of this conjugate were investigated. The results showed that the new conjugate had a remarkable modification degree for CS (more than 60%, w/w) and the optimal coupling conditions were defined as: the molar ratio of GA3:EDC/NHS:CS was 1:1.2:1.2, at pH 6.0 for 24 h. The release data showed the novel conjugate protected GA3 against photo- and thermal-degradation effectively and the concentration of GA3 in GA3-CS kept unchangeable about 60 d in different pH conditions. Compared with GA3 technical, the conjugate had better water solubility and stability and have potential applications. The present study also provides a novel preparation method of CRFs comprising a pesticide with long duration, sustained-release performance and good environmental compatibility. This method may be extended to other pesticides that possess a carboxyl group.
Collapse
Affiliation(s)
- Yao Liu
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|