1
|
Jiang YL, Bao WJ, Liu F, Wang GS, Yurkov A, Ma Q, Hu ZD, Chen XH, Zhao WN, Li AH, Wang QM. Proposal of one new family, seven new genera and seventy new basidiomycetous yeast species mostly isolated from Tibet and Yunnan provinces, China. Stud Mycol 2024; 109:57-153. [PMID: 39717653 PMCID: PMC11663428 DOI: 10.3114/sim.2024.109.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/17/2024] [Indexed: 12/25/2024] Open
Abstract
More than 2 000 yeast strains isolated from 1 200 samples mostly collected from Tibet and Yunnan provinces in China were identified as 462 species according to the internal transcribed spacer including the 5.8S rDNA (ITS) and the D1/D2 domains of the large subunit rDNA (LSU) sequence analyses. Among them, 70 new basidiomycetous yeast species were proposed based on the multi-locus phylogenetic analyses including the D1/D2 domains, the ITS, the small subunit rDNA (SSU), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2) and translation elongation factor 1-α (TEF1), as well as the phenotypic comparisons. The average nucleotide identity (ANI) analysis with the genomic metric was also used in the evaluation of the species delimitation for the genera Holtermannia, Mrakia and Takashimella that contain closely related species with low sequence heterogeneity in both ITS and D1/D2 regions. Forty-six new species belonged to 16 genera in the Agaricomycotina, 13 new species occurred in 12 genera in the Pucciniomycotina, three new species were distributed in three genera in the Ustilaginomycotina, and eight new species were classified in seven newly established genera. One new family was also proposed based on one of these new genera. The analyses revealed several inaccurate species names attributed to genomes deposited in GenBank, indicating the necessity of a more rigorous quality checks of the genomes deposited in the public databases. Taxonomic novelties: New family: Vankyiozymaceae Q.-M. Wang; New genera: Baiomyces Q.-M. Wang, Bauerozyma Q.-M. Wang, Fengyania Q.-M. Wang, Foliozyma Q.-M. Wang, Litoriozyma Q.-M. Wang, Nakaseozyma Q.-M. Wang, Vankyiozyma Q.-M. Wang; New species: Baiomyces sejilaensis Q.-M. Wang, Bauerozyma artemisiae Q.-M. Wang, Boekhoutia foliicola Q.-M. Wang, Buckleyzyma pseudoaurantiaca Q.-M. Wang, Carlosrosaea betulae Q.-M. Wang, Carlosrosaea rhododendri Q.-M. Wang, Carlosrosaea yunnanensis Q.-M. Wang, Chrysozyma quercicola Q.-M. Wang, Curvibasidium pini Q.-M. Wang, Cystobasidium cunninghamiae Q.-M. Wang, Derxomyces foliicola Q.-M. Wang, Derxomyces motuoensis Q.-M. Wang, Derxomyces orientalis Q.-M. Wang, Derxomyces paracylindricus Q.-M. Wang, Exobasidium lijiangense Q.-M. Wang, Fengyania pteridophytorum Q.-M. Wang, Foliozyma liliicola Q.-M. Wang, Halobasidium phyllophilum Q.-M. Wang, Hannaella artemisiae Q.-M. Wang, Hannaella pteridophytorum Q.-M. Wang, Hannaella urticae Q.-M. Wang, Holtermannia pseudosaccardoi Q.-M. Wang, Kockovaella cariosiligni Q.-M. Wang, Kockovaella foliicola Q.-M. Wang, Kondoa tibetensis Q.-M. Wang, Kwoniella hippophaes Q.-M. Wang, Kwoniella lonicerae Q.-M. Wang, Litoriozyma hainanensis Q.-M. Wang, Meira marina Q.-M. Wang, Microsporomyces betulae Q.-M. Wang, Microsporomyces foliicola Q.-M. Wang, Mrakia pini Q.-M. Wang, Mrakia rhododendri Q.-M. Wang, Nakaseozyma junci Q.-M.Wang, Nakaseozyma lonicerae Q.-M. Wang, Papiliotrema castaneae Q.-M. Wang, Papiliotrema catalpae Q.-M. Wang, Phaeotremella pini Q.-M. Wang, Phaffia paratasmanica Q.-M. Wang, Phaffia rhododendri Q.-M. Wang, Piskurozyma cuscutae Q.-M. Wang, Piskurozyma humicola Q.-M. Wang, Piskurozyma liliaceifoliae Q.-M. Wang, Piskurozyma linzhiensis Q.-M. Wang, Piskurozyma nanyiensis Q.-M. Wang, Piskurozyma terricola Q.-M. Wang, Pseudohyphozyma sanghuangpori Q.-M. Wang, Pseudotremella hippophaes Q.-M. Wang, Pseudotremella rhododendri Q.-M. Wang, Rhodotorula linzhiensis Q.-M. Wang, Slooffia terricola Q.-M. Wang, Takashimella corticis Q.-M. Wang, Teunia betulicola Q.-M. Wang, Teunia chimonanthi Q.-M. Wang, Teunia heritierae Q.-M. Wang, Teunia myricariae Q.-M. Wang, Teunia parabetulicola Q.-M. Wang, Teunia quercus Q.-M. Wang, Teunia rhododendri Q.-M. Wang, Ustilago foliicola Q.-M. Wang, Vankyiozyma motuoensis Q.-M. Wang, Vanrija silvicola Q.-M. Wang, Vishniacozyma catalpae Q.-M. Wang, Vishniacozyma marinae Q.-M. Wang, Vishniacozyma paravictoriae Q.-M. Wang, Vishniacozyma pini Q.-M. Wang, Vishniacozyma pyri Q.-M. Wang, Vishniacozyma sinopodophylli Q.-M. Wang, Vishniacozyma zhenxiongensis Q.-M. Wang, Yurkovia castaneae Q.-M. Wang. Citation: Jiang Y-L, Bao W-J, Liu F, Wang G-S, Yurkov AM, Ma Q, Hu Z-D, Chen X-H, Zhao W-N, Li A-H, Wang Q-M (2024). Proposal of one new family, seven new genera and seventy new basidiomycetous yeast species mostly isolated from Tibet and Yunnan provinces, China. Studies in Mycology 109: 57-153. doi: 10.3114/sim.2024.109.02.
Collapse
Affiliation(s)
- Y.-L. Jiang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - W.-J. Bao
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - F. Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - G.-S. Wang
- Aquatic Science Institute, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850000, Tibet, China
| | - A.M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Q. Ma
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - Z.-D. Hu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - X.-H. Chen
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - W.-N. Zhao
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - A.-H. Li
- China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Q.-M. Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
- Engineering Research Center of Microbial Breeding and Conservation of Hebei Province, Hebei University, Baoding 071002, Hebei, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
2
|
Li J, Hou L, Zhang G, Cheng L, Liu Y. Comparative Analysis of Rhizosphere and Endosphere Fungal Communities in Healthy and Diseased Faba Bean Plants. J Fungi (Basel) 2024; 10:84. [PMID: 38276030 PMCID: PMC10817651 DOI: 10.3390/jof10010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
This study used the ITS approach based on Illumina MiSeq sequencing to assess the endosphere and rhizosphere fungal communities in healthy and diseased faba bean plants. The findings indicate that the most predominant phyla in all samples were Ascomycota (49.89-99.56%) and Basidiomycota (0.33-25.78%). In healthy endosphere samples, Glomeromycota (0.08-1.17%) was the only predominant phylum. In diseased endosphere samples, Olpidiomycota (0.04-1.75%) was the only predominant phylum. At the genus level, Penicillium (0.47-35.21%) was more abundant in rhizosphere soil, while Paraphoma (3.48-91.16%) was predominant in the endosphere roots of faba bean plants. Significant differences were observed in the alpha diversity of rhizosphere samples from different germplasm resources (p < 0.05). The fungal community structures were clearly distinguished between rhizosphere and endosphere samples and between healthy and diseased endosphere samples (p < 0.05). Saccharomyces was significantly enriched in diseased endosphere samples, whereas Apiotrichum was enriched in healthy endosphere samples. Vishniacozyma and Phialophora were enriched in diseased rhizosphere samples, while Pseudogymnoascus was enriched in healthy rhizosphere samples. Diseased samples displayed more strongly correlated genera than healthy samples. Saprotrophs accounted for a larger proportion of the fungal microbes in rhizosphere soil than in endosphere roots. This study provides a better understanding of the composition and diversity of fungal communities in the rhizosphere and endosphere of faba bean plants as well as a theoretical guidance for future research on the prevention or control of faba bean root rot disease.
Collapse
Affiliation(s)
- Juan Li
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Lu Hou
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Gui Zhang
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Liang Cheng
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yujiao Liu
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
3
|
Salam MTB, Kataoka R. Changes in the Endophytic Bacterial Community of Brassica rapa after Application of Systemic Insecticides. Int J Mol Sci 2023; 24:15306. [PMID: 37894986 PMCID: PMC10607537 DOI: 10.3390/ijms242015306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Insecticides not only control target pests but also adversely affect non-target communities including humans, animals, and microbial communities in host plants and soils. The effect of insecticides on non-target communities, especially endophytic bacterial communities, remains poorly understood. Two phases of treatments were conducted to compare the trends in endophytic bacterial response after insecticide application. Endophytic bacteria were isolated at 2 and 4 weeks after germination. Most insecticide treatments showed a declining trend in bacterial diversity and abundance, whereas an increasing trend was observed in the control. Therefore, insecticide use negatively affected non-target endophytic bacterial communities. Bacillus spp. was mostly dominant in the early stage in both insecticide treatment and control groups. Nevertheless, in the matured stage, mostly bacteria including Pseudomonas spp., Priestia spp. were dominant in groups treated with high insecticide concentrations. Therefore, plants can regulate and moderate their microbiome during their lifecycle depending on surrounding environmental conditions.
Collapse
Affiliation(s)
- Md. Tareq Bin Salam
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu 400-8510, Yamanashi, Japan;
- Soil, Water and Environment Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Ryota Kataoka
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu 400-8510, Yamanashi, Japan;
| |
Collapse
|
4
|
Cervantes K, Velasco-Cruz C, Grauke LJ, Wang X, Conner P, Wells L, Bock CH, Pisani C, Randall JJ. Influence of Geographical Orchard Location on the Microbiome from the Progeny of a Pecan Controlled Cross. PLANTS (BASEL, SWITZERLAND) 2023; 12:360. [PMID: 36679073 PMCID: PMC9862047 DOI: 10.3390/plants12020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Carya&nbsp;illinoinensis (Wangenh.) K.Koch production has expanded beyond the native distribution as the genetic diversity of the species, in part, has allowed the trees to grow under broad geographic and climatic ranges. Research in other plant species has demonstrated that the phytobiome enhances their ability to survive and thrive in specific environments and, conversely, is influenced by the prevailing environment and plant genetics, among other factors. We sought to analyze the microbiota of pecan seedlings from the controlled cross 'Lakota' × 'Oaxaca' that were made in Georgia and Texas, respectively, to determine if the maternal geographical origin influences the microbiome of the resulting progeny. No significant differences in bacterial communities were observed between the seeds obtained from the two different states (p = 0.081). However, seed origin did induce significant differences in leaf fungal composition (p = 0.012). Results suggest that, in addition to some environmental, epigenetics, or host genetic components, ecological processes, such as dispersal mechanisms of the host, differentially impact the pecan microbiome, which may have ramifications for the health of trees grown in different environments. Future studies on the role of the microbiome in plant health and productivity will aid in the development of sustainable agriculture for improved food security.
Collapse
Affiliation(s)
- Kimberly Cervantes
- Molecular Biology and Interdisciplinary Life Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ciro Velasco-Cruz
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - L. J. Grauke
- USDA ARS, Southern Plains Agricultural Research Center, Pecan Breeding & Genetics, College Station, Somerville, TX 77845, USA
| | - Xinwang Wang
- USDA ARS, Southern Plains Agricultural Research Center, Pecan Breeding & Genetics, College Station, Somerville, TX 77845, USA
| | - Patrick Conner
- Department of Horticulture, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
| | - Lenny Wells
- Department of Horticulture, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
| | - Clive H. Bock
- USDA ARS, Southeastern Fruit and Tree Nut Research Station, Byron, GA 31008, USA
| | - Cristina Pisani
- USDA ARS, Southeastern Fruit and Tree Nut Research Station, Byron, GA 31008, USA
| | - Jennifer J. Randall
- Molecular Biology and Interdisciplinary Life Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
5
|
Yadav U, Bano N, Bag S, Srivastava S, Singh PC. An Insight into the Endophytic Bacterial Community of Tomato after Spray Application of Propiconazole and Bacillus subtilis Strain NBRI-W9. Microbiol Spectr 2022; 10:e0118622. [PMID: 36066253 PMCID: PMC9602357 DOI: 10.1128/spectrum.01186-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022] Open
Abstract
Propiconazole (PCZ) is a commonly sprayed fungicide against fungal pathogens. Being systemic in action, it reaches subcellular layers and impacts the endophytes. Although PCZ is a fungicide, it is hypothesized to exert an inhibitory effect on the bacterial endophytes. Therefore, this study aims to get an insight into the perturbations caused by the systemically acting antifungal agents PCZ and Bacillus subtilis (W9) and the consequences thereof. The current study compared the 16S rRNA microbial diversity, abundance, and functions of the endophytic bacterial community of tomato in response to PCZ, W9, and PCZ+W9 application. The implications of these treatments on the development of bacterial speck disease by Pseudomonas syringae were also studied. The culturable endophyte population fluctuated after (bio)fungicide application and stabilized by 72 h. At 72 h, the endophyte population was ~3.6 × 103 CFUg-1 in control and ~3.6 × 104 in W9, ~3.0 × 102 in PCZ, and ~5.3 × 103 in PCZ+W9 treatment. A bacterial community analysis showed a higher relative abundance of Bacillales, Burkholderiales, Rhizobiales, Pseudomonadales, and Actinomycetales in the W9 treatment compared with that in the PCZ treatment and control. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis showed enhanced metabolic pathways related to secretion, stress, chemotaxis, and mineral nutrition in the W9 treatment. Disease severity was greater in PCZ than that in the W9 treatment. Disease severity on tomato plants showed strong negative correlations with Sphingomonas (r = -0.860) and Janthinobacterium (r = -0.810), indicating that the natural biocontrol communities are agents of plant resistance to diseases. Outcomes show that systemic chemicals are a potential threat to the nontarget endophytes and that plants became susceptible to disease on endophyte decline; this issue could be overcome by the application of microbial inoculums. IMPORTANCE Endophytes are plant inhabitants acting as its extended genome. The present study highlights the importance of maintaining plant endophytes for sustainable disease resistance in plants. The impact of chemical fungicides and biofungicides was shown on tomato endophytes, in addition to their implications on plant susceptibility to bacterial speck disease. The observations point toward the deleterious effects of systemic pesticide application on endophyte niches that disrupt their diversity and functions compromising plant immunity.
Collapse
Affiliation(s)
- Udit Yadav
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Nasreen Bano
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sumit Bag
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Suchi Srivastava
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Poonam C. Singh
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Wang K, Auzane A, Overmyer K. The immunity priming effect of the Arabidopsis phyllosphere resident yeast Protomyces arabidopsidicola strain C29. Front Microbiol 2022; 13:956018. [PMID: 36118213 PMCID: PMC9478198 DOI: 10.3389/fmicb.2022.956018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
The phyllosphere is a complex habitat for diverse microbial communities. Under natural conditions, multiple interactions occur between host plants and phyllosphere resident microbes, such as bacteria, oomycetes, and fungi. Our understanding of plant associated yeasts and yeast-like fungi lags behind other classes of plant-associated microbes, largely due to a lack of yeasts associated with the model plant Arabidopsis, which could be used in experimental model systems. The yeast-like fungal species Protomyces arabidopsidicola was previously isolated from the phyllosphere of healthy wild-growing Arabidopsis, identified, and characterized. Here we explore the interaction of P. arabidopsidicola with Arabidopsis and found P. arabidopsidicola strain C29 was not pathogenic on Arabidopsis, but was able to survive in its phyllosphere environment both in controlled environment chambers in the lab and under natural field conditions. Most importantly, P. arabidopsidicola exhibited an immune priming effect on Arabidopsis, which showed enhanced disease resistance when subsequently infected with the fungal pathogen Botrytis cinerea. Activation of the mitogen-activated protein kinases (MAPK), camalexin, salicylic acid, and jasmonic acid signaling pathways, but not the auxin-signaling pathway, was associated with this priming effect, as evidenced by MAPK3/MAPK6 activation and defense marker expression. These findings demonstrate Arabidopsis immune defense priming by the naturally occurring phyllosphere resident yeast species, P. arabidopsidicola, and contribute to establishing a new interaction system for probing the genetics of Arabidopsis immunity induced by resident yeast-like fungi.
Collapse
|
7
|
Ayesha MS, Suryanarayanan TS, Nataraja KN, Prasad SR, Shaanker RU. Seed Treatment With Systemic Fungicides: Time for Review. FRONTIERS IN PLANT SCIENCE 2021; 12:654512. [PMID: 34408757 PMCID: PMC8365024 DOI: 10.3389/fpls.2021.654512] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/06/2021] [Indexed: 05/27/2023]
Abstract
Pre-sowing seed treatment with systemic fungicides is a firmly entrenched practice for most agricultural crops worldwide. The treatment is intended to protect the crop against seed- and soil-borne diseases. In recent years, there is increasing evidence that fungicidal applications to manage diseases might inadvertently also affect non-target organisms, such as endophytes. Endophytes are ubiquitously present in plants and contribute to plant growth and development besides offering resistance to biotic and abiotic stresses. In seeds, endophytes may play a role in seed development, seed germination, seedling establishment and crop performance. In this paper, we review the recent literature on non-target effects of fungicidal applications on endophytic fungal community and discuss the possible consequences of indiscriminate seed treatment with systemic fungicide on seed endophytes. It is now well recognized that endophytes are ubiquitously present in all parts of the plant, including the seeds. They may be transmitted vertically from seed to seed as in many grasses and/or acquired horizontally from the soil and the environment. Though the origins and evolution of these organisms in plants are a matter of conjecture, numerous studies have shown that they symbiotically aid in plant growth and development, in nutrient acquisition as well in protecting the plants from abiotic and biotic stresses. Against this background, it is reasonable to assume that the use of systemic fungicides in seed treatment may not only affect the seed endophytes but also their attendant benefits to seedling growth and establishment. While there is evidence to indicate that fungicidal applications to manage plant diseases also affect foliar endophytes, there are only few studies that have documented the effect of seed treatment on seed-borne endophytes. Some of the convincing examples of the latter come from studies on the effect of fungicide application on rye grass seed endophyte AR37. More recently, experiments have shown that removal of seed endophytes by treatment with systemic fungicides leads to significant loss of seedling vigour and that such losses could be partially restored by enriching the seedlings with the lost endophytes. Put together, these studies reinforce the importance of seed endophytes to seedling growth and establishment and draw attention on how to trade the balance between the benefits of seed treatments and the direct and indirect costs incurred due to loss of endophytes. Among several approaches, use of reduced-risk fungicides and identifying fungicide-resistant endophytes are suggested to sustain the endophyte contribution to early seedling growth.
Collapse
Affiliation(s)
- Mulla S. Ayesha
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India
| | | | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India
| | | | - Ramanan Uma Shaanker
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India
- School of Ecology and Conservation, University of Agricultural Sciences, Bangalore, India
| |
Collapse
|
8
|
Wang K, Sipilä T, Overmyer K. A novel Arabidopsis phyllosphere resident Protomyces species and a re-examination of genus Protomyces based on genome sequence data. IMA Fungus 2021; 12:8. [PMID: 33741074 PMCID: PMC7980564 DOI: 10.1186/s43008-021-00054-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Protomyces is an understudied genus of yeast-like fungi currently defined as phytopathogens of only Umbelliferae and Compositae. Species relationships and boundaries remain controversial and molecular data are lacking. Of the 82 named Protomyces, we found few recent studies and six available cultures. We previously isolated Protomyces strains from wild Arabidopsis thaliana, a member of Brassicaceae, a family distant from accepted Protomyces hosts. We previously sequenced the genomes of all available Protomyces species, and P. arabidopsidicola sp. nov. strain C29, from Arabidopsis. Phylogenomics suggests this new species occupied a unique position in the genus. Genomic, morphological, and physiological characteristics distinguished P. arabidopsidicola sp. nov. from other Protomyces. Nuclear gene phylogenetic marker analysis suggests actin1 gene DNA sequences could be used with nuclear ribosomal DNA internal transcribed spacer sequences for rapid identification of Protomyces species. Previous studies demonstrated P. arabidopsidicola sp. nov. could persist on the Arabidopsis phyllosphere and Protomyces sequences were discovered on Arabidopsis at multiple sites in different countries. We conclude that the strain C29 represents a novel Protomyces species and propose the name of P. arabidopsidicola sp. nov. Consequently, we propose that Protomyces is not strictly associated only with the previously recognized host plants.
Collapse
Affiliation(s)
- Kai Wang
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, P.O. Box 65, Viikinkaari 1, FI-00014, Helsinki, Finland
| | - Timo Sipilä
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, P.O. Box 65, Viikinkaari 1, FI-00014, Helsinki, Finland.,Present address: Finnish Institute of Molecular Medicine, University of Helsinki, P.O. Box 20, FI-00014, Helsinki, Finland
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, P.O. Box 65, Viikinkaari 1, FI-00014, Helsinki, Finland.
| |
Collapse
|
9
|
Li AH, Yuan FX, Groenewald M, Bensch K, Yurkov AM, Li K, Han PJ, Guo LD, Aime MC, Sampaio JP, Jindamorakot S, Turchetti B, Inacio J, Fungsin B, Wang QM, Bai FY. Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: Proposal of two new orders, three new families, eight new genera and one hundred and seven new species. Stud Mycol 2020; 96:17-140. [PMID: 32206137 PMCID: PMC7082220 DOI: 10.1016/j.simyco.2020.01.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nearly 500 basidiomycetous yeast species were accepted in the latest edition of The Yeasts: A Taxonomic Study published in 2011. However, this number presents only the tip of the iceberg of yeast species diversity in nature. Possibly more than 99 % of yeast species, as is true for many groups of fungi, are yet unknown and await discovery. Over the past two decades nearly 200 unidentified isolates were obtained during a series of environmental surveys of yeasts in phyllosphere and soils, mainly from China. Among these isolates, 107 new species were identified based on the phylogenetic analyses of nuclear ribosomal DNA (rDNA) [D1/D2 domains of the large subunit (LSU), the small subunit (SSU), and the internal transcribed spacer region including the 5.8S rDNA (ITS)] and protein-coding genes [both subunits of DNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1) and the mitochondrial gene cytochrome b (CYTB)], and physiological comparisons. Forty-six of these belong to 16 genera in the Tremellomycetes (Agaricomycotina). The other 61 are distributed in 26 genera in the Pucciniomycotina. Here we circumscribe eight new genera, three new families and two new orders based on the multi-locus phylogenetic analyses combined with the clustering optimisation analysis and the predicted similarity thresholds for yeasts and filamentous fungal delimitation at genus and higher ranks. Additionally, as a result of these analyses, three new combinations are proposed and 66 taxa are validated.
Collapse
Key Words
- Apiotrichum xylopini S.O. Suh, C.F. Lee, Gujjari & J.J. Zhou ex Kachalkin, Yurkov & Boekhout
- Bannozyma arctica Vishniac & M. Takash. ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Basidiomycetous yeasts
- Begerowomyces Q.M. Wang & F.Y. Bai
- Begerowomyces foliicola Q.M. Wang, F.Y. Bai & A.H. Li
- Bensingtonia pseudorectispora Q.M. Wang, F.Y. Bai & A.H. Li
- Bensingtonia wuzhishanensis Q.M. Wang, F.Y. Bai & A.H. Li
- Boekhoutia Q.M. Wang & F.Y. Bai
- Boekhoutia sterigmata Q.M. Wang, F.Y. Bai & A.H. Li
- Bulleribasidium cremeum Q.M. Wang, F.Y. Bai & A.H. Li
- Bulleribasidium elongatum Q.M. Wang, F.Y. Bai & A.H. Li
- Bulleribasidium panici Fungsin, M. Takash. & Nakase ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Bulleribasidium phyllophilum Q.M. Wang, F.Y. Bai & A.H. Li
- Bulleribasidium phyllostachydis Q.M. Wang, F.Y. Bai & A.H. Li
- Bulleribasidium pseudopanici Q.M. Wang, F.Y. Bai & A.H. Li
- Bulleribasidium siamense Fungsin, M. Takash. & Nakase ex Q.M. Wang, F.Y. Bai, Boekhout & Nakase
- Carcinomyces arundinariae Fungsin, M. Takash. & Nakase ex Yurkov
- Carlosrosaea foliicola Q.M. Wang, F.Y. Bai & A.H. Li
- Carlosrosaea simaoensis Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma cylindrica Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma flava Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma fusiformis Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma iridis Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma pseudogriseoflava Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma rhododendri Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma sambuci Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma sorbariae Q.M. Wang, F.Y. Bai & A.H. Li
- Colacogloea aletridis Q.M. Wang, F.Y. Bai & A.H. Li
- Colacogloea hydrangeae Q.M. Wang, F.Y. Bai & A.H. Li
- Colacogloea rhododendri Q.M. Wang, F.Y. Bai & A.H. Li
- Colacogloea subericola (Belloch, Villa-Carv., Á;lv.-Rodríg. & Coque) Q.M. Wang, & F.Y. Bai
- Cystobasidium alpinum Turchetti, Selbmann, Onofri & Buzzini
- Cystobasidium portillonense Laich, Vaca & R. Chávez ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Cystobasidium raffinophilum Q.M. Wang, F.Y. Bai & A.H. Li
- Cystobasidium terricola Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces bifurcus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces cylindricus F.Y. Bai, Q.M. Wang & M. Takash. ex F.Y. Bai & Q.M. Wang
- Derxomyces elongatus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces hubeiensis F.Y. Bai, Q.M. Wang & M. Takash. ex F.Y. Bai & Q.M. Wang
- Derxomyces longicylindricus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces longiovatus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces melastomatis Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces nakasei F.Y. Bai, Q.M. Wang & M. Takash. ex F.Y. Bai & Q.M. Wang
- Derxomyces napiformis Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces ovatus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces polymorphus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces pseudoboekhoutii Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces pseudoyunnanensis Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces taiwanicus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces xingshanicus Q.M. Wang, F.Y. Bai & A.H. Li
- Dioszegia heilongjiangensis Q.M. Wang, F.Y. Bai & A.H. Li
- Dioszegia kandeliae Q.M. Wang, F.Y. Bai, L.D. Guo & A.H. Li
- Dioszegia maotaiensis Q.M. Wang, F.Y. Bai & A.H. Li
- Dioszegia milinica Q.M. Wang, F.Y. Bai & A.H. Li
- Dioszegia ovata Q.M. Wang, F.Y. Bai & A.H. Li
- Dioszegia zsoltii F.Y. Bai, M. Takash. & Nakase
- F.Y. Bai, M. Groenew. & Boekhout
- Filobasidium dingjieense Q.M. Wang, F.Y. Bai & A.H. Li
- Filobasidium globosum Q.M. Wang, F.Y. Bai & A.H. Li
- Filobasidium mali Q.M. Wang, F.Y. Bai & A.H. Li
- Filobasidium mucilaginum Q.M. Wang, F.Y. Bai & A.H. Li
- Genolevuria bromeliarum Landell & P. Valente ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Genolevuria pseudoamylolytica Q.M. Wang, F.Y. Bai & A.H. Li
- Glaciozyma Turchetti, Connell, Thomas-Hall & Boekhout ex M. Groenew. & Q.M. Wang
- Glaciozyma antarctica (Fell, Statzell, I.L. Hunter & Phaff) M. Groenew. & Q.M. Wang
- Glaciozyma martinii Turchetti, Connell, Thomas-Hall & Boekhout
- Glaciozyma watsonii Turchetti, Connell, Thomas-Hall & Boekhout
- Heitmania cylindrica Q.M. Wang, F.Y. Bai & A.H. Li
- Heitmania tridentata Q.M. Wang, F.Y. Bai & A.H. Li
- Heitmaniaceae Q.M. Wang & F.Y. Bai
- Heitmaniales Q.M. Wang & F.Y. Bai
- Holtermannia saccardoi Q.M. Wang, F.Y. Bai & A.H. Li
- Jianyuniaceae Q.M. Wang & F.Y. Bai
- Kockovaella haikouensis Q.M. Wang, F.Y. Bai & A.H. Li
- Kockovaella ischaemi Q.M. Wang, F.Y. Bai & A.H. Li
- Kockovaella mexicana Lopandić, O. Molnár & Prillinger ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Kockovaella nitrophila Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa arboricola Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa chamaenerii Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa cylindrica Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa daliangziensis Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa foliicola Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa lulangica Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa myxariophila Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa rhododendri Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa ribitophobia Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa thailandica Fungsin, Hamam. & Nakase ex Q.M. Wang, M. Groenew., F.Y. Bai & Boekhout
- Kwoniella newhampshirensis K. Sylvester, Q.M. Wang & C.T. Hittinger
- Kwoniella ovata Q.M. Wang, F.Y. Bai & A.H. Li
- Kwoniella shandongensis R. Chen, Y.M. Jiang & S.C. Wei ex M. Groenew. & Q.M. Wang
- Leucosporidium creatinivorum (Golubev) M. Groenew. & Q.M. Wang
- Leucosporidium fragarium (J.A. Barnett & Buhagiar) M. Groenew. & Q.M. Wang
- Leucosporidium intermedium (Nakase & M. Suzuki) M. Groenew. & Q.M. Wang
- Leucosporidium muscorum (Di Menna) M. Groenew. & Q.M. Wang
- Leucosporidium yakuticum (Golubev) M. Groenew. & Q.M. Wang
- Meniscomyces Q.M. Wang & F.Y. Bai
- Meniscomyces layueensis Q.M. Wang, F.Y. Bai & A.H. Li
- Microbotryozyma swertiae Q.M. Wang, F.Y. Bai & A.H. Li
- Microsporomyces ellipsoideus Q.M. Wang, F.Y. Bai & A.H. Li
- Microsporomyces pseudomagnisporus Q.M. Wang, F.Y. Bai & A.H. Li
- Microsporomyces rubellus Q.M. Wang, F.Y. Bai & A.H. Li
- Molecular phylogeny
- Naganishia onofrii Turchetti, Selbmann & Zucconi ex Yurkov
- Naganishia vaughanmartiniae Turchetti, Blanchette & Arenz ex Yurkov
- Nielozyma Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Nielozyma formosana Nakase, Tsuzuki, F.L. Lee & M. Takash. ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Nielozyma melastomatis Nakase, Tsuzuki, F.L. Lee & M. Takash. ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Oberwinklerozyma dicranopteridis Q.M. Wang, F.Y. Bai & A.H. Li
- Oberwinklerozyma nepetae Q.M. Wang, F.Y. Bai & A.H. Li
- Oberwinklerozyma silvestris Golubev & Scorzetti ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Oberwinklerozyma straminea Golubev & Scorzetti ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Papiliotrema aspenensis (Ferreira-Paim, et al.) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Papiliotrema baii Yurkov, M.A. Guerreiro & Á;. Fonseca ex Yurkov
- Papiliotrema frias V. de García, Zalar, Brizzio, Gunde-Cim. & Van Broock ex Yurkov
- Papiliotrema hoabinhensis D.T. Luong, M. Takash., Ty, Dung & Nakase ex Yurkov
- Papiliotrema japonica J.P. Samp., Fonseca & Fell ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Papiliotrema terrestris Crestani, Landell, Faganello, Vainstein, Vishniac & P. Valente ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Papiliotrema wisconsinensis K. Sylvester, Q.M. Wang & Hittinger ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Phaeotremella lactea Q.M. Wang, F.Y. Bai & A.H. Li
- Phaeotremella ovata Q.M. Wang, F.Y. Bai & A.H. Li
- Phaffia aurantiaca Q.M. Wang, F.Y. Bai & A.H. Li
- Phyllozyma aceris Q.M. Wang, F.Y. Bai & A.H. Li
- Phyllozyma jiayinensis Q.M. Wang, F.Y. Bai & A.H. Li
- Piskurozyma fildesensis T.T. Zhang & Li Y. Yu ex Yurkov
- Piskurozyma taiwanensis Nakase, Tsuzuki & M. Takash. ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Pseudobensingtonia fusiformis Q.M. Wang, F.Y. Bai & A.H. Li
- Pseudohyphozyma hydrangeae Q.M. Wang, F.Y. Bai & A.H. Li
- Pseudohyphozyma lulangensis Q.M. Wang, F.Y. Bai & A.H. Li
- Pseudoleucosporidium V. de García, et al. ex M. Groenew. & Q.M. Wang
- Pseudoleucosporidium fasciculatum (Babeva & Lisichk.) M. Groenew. & Q.M. Wang
- Pseudosterigmatospora Q.M. Wang & F.Y. Bai
- Pseudosterigmatospora motuoensis Q.M. Wang, F.Y. Bai & A.H. Li
- Pseudotremella lacticolour Satoh & Makimura ex Yurkov
- Rhodosporidiobolus fuzhouensis Q.M. Wang, F.Y. Bai & A.H. Li
- Rhodosporidiobolus jianfalingensis Q.M. Wang, F.Y. Bai & A.H. Li
- Rhodosporidiobolus platycladi Q.M. Wang, F.Y. Bai & A.H. Li
- Rhynchogastrema complexa (Landell, et al.) Xin Zhan Liu, F.Y. Bai, M. Groenew., Boekhout & Yurkov
- Rhynchogastrema fermentans (C.F. Lee) Xin Zhan Liu, F.Y. Bai, M. Groenew., Boekhout & Yurkov
- Rhynchogastrema glucofermentans (S.O. Suh & M. Blackw.) Xin Zhan Liu, F.Y. Bai, M. Groenew., Boekhout & Yurkov
- Rhynchogastrema nanyangensis F.L. Hui & Q.H. Niu ex Xin Zhan Liu, F.Y. Bai, M. Groenew., Boekhout & Yurkov
- Rhynchogastrema tunnelae (Boekhout, Fell, Scorzetti & Theelen) Xin Zhan Liu, F.Y. Bai, M. Groenew., Boekhout & Yurkov
- Rhynchogastrema visegradensis (G. Péter & Dlauchy) Xin Zhan Liu, F.Y. Bai, M. Groenew., Boekhout &Yurkov
- Robertozyma Q.M. Wang & F.Y. Bai
- Robertozyma ningxiaensis Q.M. Wang, F.Y. Bai & A.H. Li
- Rosettozyma Q.M. Wang & F.Y. Bai
- Rosettozyma cystopteridis Q.M. Wang, F.Y. Bai & A.H. Li
- Rosettozyma motuoensis Q.M. Wang, F.Y. Bai & A.H. Li
- Rosettozyma petaloides Q.M. Wang, F.Y. Bai & A.H. Li
- Rosettozymaceae Q.M. Wang & F.Y. Bai
- Rosettozymales Q.M. Wang & F.Y. Bai
- Ruinenia bangxiensis Q.M. Wang, F.Y. Bai & A.H. Li
- Ruinenia diospyri Nakase, Tsuzuki, F.L. Lee, Jindam. & M. Takash. ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Ruinenia fanjingshanensis Q.M. Wang, F.Y. Bai & A.H. Li
- Ruinenia lunata Q.M. Wang, F.Y. Bai & A.H. Li
- Ruinenia pyrrosiae Nakase, Tsuzuki, F.L. Lee, Jindam. & M. Takash. ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Saitozyma ninhbinhensis (D.T. Luong, M. Takash., Dung & Nakase)Yurkov
- Saitozyma paraflava Golubev & J.P. Samp. ex Xin Zhan Liu
- Saitozyma pseudoflava Q.M. Wang, F.Y. Bai & A.H. Li
- Sakaguchia melibiophila M. Groenew., Q.M. Wang & F.Y. Bai
- Slooffia globosa Q.M. Wang, F.Y. Bai & A.H. Li
- Solicoccozyma gelidoterrea Q.M. Wang, F.Y. Bai & A.H. Li
- Species diversity
- Sporobolomyces cellobiolyticus Q.M. Wang, F.Y. Bai & A.H. Li
- Sporobolomyces ellipsoideus Q.M. Wang, F.Y. Bai & A.H. Li
- Sporobolomyces primogenomicus Q.M. Wang & F.Y. Bai
- Sporobolomyces reniformis Q.M. Wang, F.Y. Bai & A.H. Li
- Sterigmatospora Q.M. Wang & F.Y. Bai
- Sterigmatospora layueensis Q.M. Wang, F.Y. Bai & A.H. Li
- Symmetrospora oryzicola (Nakase & M. Suzuki) Q.M. Wang & F.Y. Bai
- Symmetrospora rhododendri Q.M. Wang, F.Y. Bai & A.H. Li
- Taxonomy
- Teunia Q.M. Wang & F.Y. Bai
- Teunia betulae K. Sylvester, Q.M. Wang & Hittinger ex Q.M. Wang, F.Y. Bai & A.H. Li
- Teunia cuniculi (K.S. Shin & Y.H. Park) Q.M. Wang, F.Y. Bai & A.H. Li
- Teunia globosa Q.M. Wang, F.Y. Bai & A.H. Li
- Teunia helanensis Q.M. Wang, F.Y. Bai & A.H. Li
- Teunia korlaensis Q.M. Wang, F.Y. Bai & A.H. Li
- Teunia tronadorensis V. de Garcia, Zalar, Brizzio, Gunde-Cim. & van Brook ex Q.M. Wang, F.Y. Bai & A.H. Li
- Tremella basidiomaticola Xin Zhan Liu & F.Y. Bai
- Tremella shuangheensis Q.M. Wang, F.Y. Bai & A.H. Li
- Trimorphomyces sakaeraticus Fungsin, M. Takash. & Nakase ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Vanrija meifongana C.F. Lee ex Kachalkin Yurkov & Boekhout
- Vanrija nantouana C.F. Lee ex Kachalkin Yurkov & Boekhout
- Vanrija thermophila Vogelmann, S. Chaves & C. Hertel ex Kachalkin Yurkov & Boekhout
- Vishniacozyma europaea Q.M. Wang, F.Y. Bai & A.H. Li
- Vishniacozyma foliicola Q.M. Wang & F.Y. Bai ex Yurkov
- Vishniacozyma heimaeyensis Vishniac ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Vishniacozyma melezitolytica Q.M. Wang, F.Y. Bai & A.H. Li
- Vishniacozyma pseudopenaeus Q.M. Wang, F.Y. Bai & A.H. Li
- Vishniacozyma psychrotolerans V. de García, Zalar, Brizzio, Gunde-Cim. & Van Broock ex Yurkov
- Vishniacozyma taibaiensis Q.M. Wang & F.Y. Bai ex Yurkov
- Vishniacozyma tephrensis Vishniac ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Yamadamyces Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Yamadamyces rosulatus Golubev & Scorzetti ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Yamadamyces terricola Q.M. Wang, F.Y. Bai & A.H. Li
- Yurkovia longicylindrica Q.M. Wang, F.Y. Bai & A.H. Li
Collapse
Affiliation(s)
- A-H Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - F-X Yuan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,North Minzu University, Yinchuan, Ningxia, 750030, China
| | - M Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - K Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A M Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, 38124, Germany
| | - K Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - P-J Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - L-D Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - M C Aime
- Purdue University, Department of Botany and Plant Pathology, West Lafayette, IN, 47901, USA
| | - J P Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,PYCC - Portuguese Yeast Culture Collection, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - S Jindamorakot
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - B Turchetti
- Department of Agriculture, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Perugia, 74 - I-06121, Italy
| | - J Inacio
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - B Fungsin
- TISTR Culture Collection, Thailand Institute of Scientific and Technological Research (TISTR), 35 M 3, Technopolis, Khlong Ha, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Q-M Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, China
| | - F-Y Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
10
|
Batzer JC, Mueller DS. Soybean Fungal Endophytes Alternaria and Diaporthe spp. are Differentially Impacted by Fungicide Application. PLANT DISEASE 2020; 104:52-59. [PMID: 31738691 DOI: 10.1094/pdis-05-19-1001-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In field trials in Iowa, we investigated the association of a fungicide applied at early pod set to the diversity and composition of foliar endophytic fungi in presenescent soybeans. The main purpose of our study was to determine whether fungicides affect the microbiome of soybean plants during the pod-fill reproductive stage. In a replicated experiment focused on the impact of a fungicide application including a quinone outside inhibitor (QoI) and a pyrazole-carboxamide spanning two growing seasons, healthy stems and leaves near the tops of soybean were sampled for endophytic fungi. The survey yielded 1,791 isolates belonging to 17 putative species, identified by morphology and sequence analysis of the ribosomal DNA internal transcribed spacer region. Taxa were grouped by genus into operational taxonomic units: Alternaria, Colletotrichum, and Diaporthe were the dominant genera isolated. Plant parts were analyzed separately using a multivariate community analysis of isolate counts per plant. The 14.3% fluxapyroxad and 28.6% pyraclostrobin fungicide spray significantly increased the proportion of Diaporthe isolates over no-spray controls, whereas the inverse occurred for foliar Alternaria isolates. In addition, seed harvested from fields with shorter-season varieties and sprayed with fungicide showed higher percentages of Diaporthe isolates than fields with no fungicide spray. In conclusion, soybean farmers may want to consider that the application of a QoI fungicide in the absence of disease pressure might adversely impact seed quality.
Collapse
Affiliation(s)
- Jean Carlson Batzer
- Plant Pathology and Microbiology Department, Iowa State University, Ames, IA
| | - Daren S Mueller
- Plant Pathology and Microbiology Department, Iowa State University, Ames, IA
- Integrated Pest Management Program, Iowa State University, Ames, IA
| |
Collapse
|
11
|
|